# Congruence on a group

(Redirected from Congruence)
VIEW RELATED: Analogues of this | Variations of this | Opposites of this |[SHOW MORE]

## Definition

### Symbol-free definition

A congruence on a group is an equivalence relation on the elements of the group that is compatible with all the group operations.

### Definition with symbols

A congruence on a group $G$ is an equivalence relation $\equiv$ on $G$ such that:

• $a \equiv b \implies a^{-1} \equiv b^{-1}$
• $a \equiv b, c \equiv d \implies ac \equiv bd$

The term congruence can more generally be used for any algebra, in the theory of universal algebras. Further information: congruence on an algebra

## Facts

### The congruence class of the identity element

It is easy to see that the congruence class of the identity element is a normal subgroup.

Conversely, given any normal subgroup, there is a unique congruence where the congruence class of the identity element is that normal subgroup. The congruence classes here are the cosets of the normal subgroup.

### The quotient map for a congruence

Given a congruence on a group, there is a natural quotient map from the group to the set of congruence classes. Under this map, the set of congruence classes inherits a group structure. This is termed the quotient group.