Linear representation theory of special linear group:SL(2,5)
This article gives specific information, namely, linear representation theory, about a particular group, namely: special linear group:SL(2,5).
View linear representation theory of particular groups | View other specific information about special linear group:SL(2,5)
This article gives information on the linear representation theory in characteristics other than 2,3,5 of special linear group:SL(2,5), which is the special linear group of degree two over field:F5. The group is also the binary icosahedral group and is one of the finite binary von Dyck groups.
Summary
Item | Value |
---|---|
Degrees of irreducible representations over a splitting field (such as or ) | 1,2,2,3,3,4,4,5,6 maximum: 6, lcm: 60, number: 9, sum of squares: 120, quasirandom degree: 2 |
Family contexts
Family | Parameter values | General discussion of linear representation theory of family |
---|---|---|
special linear group of degree two over a finite field (denoted for field size ) | , i.e., field:F5, so the group is | linear representation theory of special linear group of degree two over a finite field |
double cover of alternating group | , so the group is | linear representation theory of double cover of alternating group |
GAP implementation
Degrees of irreducible representations
The degrees of irreducible representations can be determined using the CharacterDegrees function:
gap> CharacterDegrees(SL(2,5)); [ [ 1, 1 ], [ 2, 2 ], [ 3, 2 ], [ 4, 2 ], [ 5, 1 ], [ 6, 1 ] ]
This says that there is 1 irreducible representation of degree 1, 2 of degree 2, 2 of degree 3, 2 of degree 4, 1 of degree 5, 1 of degree 6.
Character table
The character table can be computed using the Irr and CharacterTable functions:
gap> Irr(CharacterTable(SL(2,5))); [ Character( CharacterTable( SL(2,5) ), [ 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ), Character( CharacterTable( SL(2,5) ), [ 2, -E(5)-E(5)^4, -E(5)^2-E(5)^3, -2, E(5)+E(5)^4, E(5)^2+E(5)^3, -1, 1, 0 ] ), Character( CharacterTable( SL(2,5) ), [ 2, -E(5)^2-E(5)^3, -E(5)-E(5)^4, -2, E(5)^2+E(5)^3, E(5)+E(5)^4, -1, 1, 0 ] ), Character( CharacterTable( SL(2,5) ), [ 3, -E(5)^2-E(5)^3, -E(5)-E(5)^4, 3, -E(5)^2-E(5)^3, -E(5)-E(5)^4, 0, 0, -1 ] ), Character( CharacterTable( SL(2,5) ), [ 3, -E(5)-E(5)^4, -E(5)^2-E(5)^3, 3, -E(5)-E(5)^4, -E(5)^2-E(5)^3, 0, 0, -1 ] ), Character( CharacterTable( SL(2,5) ), [ 4, -1, -1, 4, -1, -1, 1, 1, 0 ] ) , Character( CharacterTable( SL(2,5) ), [ 4, 1, 1, -4, -1, -1, 1, -1, 0 ] ), Character( CharacterTable( SL(2,5) ), [ 5, 0, 0, 5, 0, 0, -1, -1, 1 ] ), Character( CharacterTable( SL(2,5) ), [ 6, -1, -1, -6, 1, 1, 0, 0, 0 ] ) ]
The character table can be displayed more nicely as follows:
gap> Display(CharacterTable(SL(2,5))); CT17 2 3 1 1 3 1 1 1 1 2 3 1 . . 1 . . 1 1 . 5 1 1 1 1 1 1 . . . 1a 10a 10b 2a 5a 5b 3a 6a 4a X.1 1 1 1 1 1 1 1 1 1 X.2 2 A *A -2 -A -*A -1 1 . X.3 2 *A A -2 -*A -A -1 1 . X.4 3 *A A 3 *A A . . -1 X.5 3 A *A 3 A *A . . -1 X.6 4 -1 -1 4 -1 -1 1 1 . X.7 4 1 1 -4 -1 -1 1 -1 . X.8 5 . . 5 . . -1 -1 1 X.9 6 -1 -1 -6 1 1 . . . A = -E(5)-E(5)^4 = (1-ER(5))/2 = -b5
Irreducible representations
The irreducible linear representations can be computed explicitly using the IrreducibleRepresentations function:
gap> IrreducibleRepresentations(SL(2,5)); [ CompositionMapping( [ (2,5,4,3)(6,11,16,21)(7,15,19,23)(8,12,20,24)(9,13,17,25)(10,14,18, 22), (2,16,9)(3,21,15)(4,6,17)(5,11,23)(7,22,10)(8,12,13)(14,18, 19)(20,24,25) ] -> [ [ [ 1 ] ], [ [ 1 ] ] ], <action isomorphism> ) , CompositionMapping( [ (2,5,4,3)(6,11,16,21)(7,15,19,23)(8,12,20,24)(9,13, 17,25)(10,14,18,22), (2,16,9)(3,21,15)(4,6,17)(5,11,23)(7,22,10)(8, 12,13)(14,18,19)(20,24,25) ] -> [ [ [ -E(5)^2-E(5)^4, E(5)-E(5)^2 ], [ -1, E(5)^2+E(5)^4 ] ], [ [ E(5)^3, E(5)^3 ], [ E(5)+E(5)^4, E(5)+E(5)^2+E(5)^4 ] ] ], <action isomorphism> ), CompositionMapping( [ (2,5,4,3)(6,11,16,21)(7,15,19,23)(8,12,20,24)(9,13, 17,25)(10,14,18,22), (2,16,9)(3,21,15)(4,6,17)(5,11,23)(7,22,10)(8, 12,13)(14,18,19)(20,24,25) ] -> [ [ [ -E(5)^4, -1 ], [ -E(5)-E(5)^2-E(5)^4, E(5)^4 ] ], [ [ E(5)+E(5)^2+E(5)^4, -E(5)^4 ], [ E(5)+E(5)^2+E(5)^4, E(5)^3 ] ] ], <action isomorphism> ), CompositionMapping( [ (2,5,4,3)(6,11,16,21)(7,15,19,23)(8,12,20,24)(9,13, 17,25)(10,14,18,22), (2,16,9)(3,21,15)(4,6,17)(5,11,23)(7,22,10)(8, 12,13)(14,18,19)(20,24,25) ] -> [ [ [ -E(5)^2-E(5)^3, -E(5)^2-E(5)^3, 1 ], [ 0, -1, 0 ], [ E(5)^2+E(5)^3, -1, E(5)^2+E(5)^3 ] ], [ [ 0, 0, 1 ], [ -E(5)^2-E(5)^3, -E(5)^2-E(5)^3, 1 ], [ E(5)^2+E(5)^3, -1, E(5)^2+E(5)^3 ] ] ], <action isomorphism> ), CompositionMapping( [ (2,5,4,3)(6,11,16,21)(7,15,19,23)(8,12,20,24)(9,13,17,25)(10,14,18, 22), (2,16,9)(3,21,15)(4,6,17)(5,11,23)(7,22,10)(8,12,13)(14,18, 19)(20,24,25) ] -> [ [ [ 1, -E(5)^2-E(5)^3, E(5)^2+E(5)^3 ], [ 0, -1, 0 ], [ 0, 0, -1 ] ], [ [ -E(5)^2-E(5)^3, -E(5)^2-E(5)^3, -1 ], [ 0, 0, -1 ], [ 1, -E(5)^2-E(5)^3, E(5)^2+E(5)^3 ] ] ], <action isomorphism> ), CompositionMapping( [ (2,5,4,3)(6,11,16,21)(7,15,19,23)(8,12,20,24)(9,13,17,25)(10,14,18, 22), (2,16,9)(3,21,15)(4,6,17)(5,11,23)(7,22,10)(8,12,13)(14,18, 19)(20,24,25) ] -> [ [ [ -E(5)^2-E(5)^4, 2*E(5)+E(5)^2+2*E(5)^3+2*E(5)^4, -E(5)-2*E(5)^3, -E(5)^3 ], [ -1, E(5)^4, -E(5)-E(5)^3-E(5)^4, -E(5)^3 ], [ E(5)^3, E(5)+E(5)^4, -E(5)+E(5)^2, -E(5)-E(5)^3 ], [ -E(5)-E(5)^3, -E(5)-E(5)^2-E(5)^4, E(5)-E(5)^2, E(5) ] ], [ [ 0, 0, E(5)^3, 0 ], [ E(5), 0, 0, 0 ], [ 0, E(5), 0, 0 ], [ E(5)+E(5)^2+E(5)^4, -E(5)+E(5)^2, -E(5)-E(5)^2-E(5)^4, 1 ] ] ], <action isomorphism> ), CompositionMapping( [ (2,5,4,3)(6,11,16,21)(7,15,19,23)(8,12,20,24)(9,13, 17,25)(10,14,18,22), (2,16,9)(3,21,15)(4,6,17)(5,11,23)(7,22,10)(8, 12,13)(14,18,19)(20,24,25) ] -> [ [ [ -E(5)^3-E(5)^4, -E(5)^2-E(5)^3-E(5)^4, 2/5*E(5)-1/5*E(5)^2+1/5*E(5)^3+3/5*E(5)^4, 6/5*E(5)+7/5*E(5)^2+3/5*E(5)^3-1/5*E(5)^4 ], [ -E(5)-2*E(5)^2-E(5)^3-E(5)^4, -E(5)-E(5)^2, -1, -E(5)^2-E(5)^3-E(5)^4 ], [ -E(5)^4, -E(5)^2-E(5)^3-E(5)^4, 3/5*E(5)+1/5*E(5)^2-1/5*E(5)^3 +2/5*E(5)^4, 4/5*E(5)+3/5*E(5)^2+2/5*E(5)^3+1/5*E(5)^4 ], [ E(5)+E(5)^2, E(5), -6/5*E(5)-2/5*E(5)^2-3/5*E(5)^3-4/5*E(5)^4, 2/5*E(5)+4/5*E(5)^2+6/5*E(5)^3+3/5*E(5)^4 ] ], [ [ 0, 0, 0, -E(5) ], [ E(5)+E(5)^2, -E(5)^3-E(5)^4, -2/5*E(5)-4/5*E(5)^2-1/5*E(5)^3 -3/5*E(5)^4, 4/5*E(5)+8/5*E(5)^2+7/5*E(5)^3+1/5*E(5)^4 ], [ -E(5)^3, -E(5)-E(5)^2-E(5)^3, -2/5*E(5)-4/5*E(5)^2-1/5*E(5)^3-3/5*E(5)^4, -1/5*E(5)-2/5*E(5)^2-3/5*E(5)^3-4/5*E(5)^4 ], [ E(5)^2+E(5)^3, E(5)^2, 4/5*E(5)-2/5*E(5)^2+2/5*E(5)^3+1/5*E(5)^4, -3/5*E(5)-1/5*E(5)^2+1/5*E(5)^3+3/5*E(5)^4 ] ] ], <action isomorphism> ), CompositionMapping( [ (2,5,4,3)(6,11,16,21)(7,15,19,23)(8,12,20,24)(9,13, 17,25)(10,14,18,22), (2,16,9)(3,21,15)(4,6,17)(5,11,23)(7,22,10)(8, 12,13)(14,18,19)(20,24,25) ] -> [ [ [ 1, 0, 0, 0, 0 ], [ -1, -1, -1, -1, -1 ], [ 0, 0, 0, 1, 0 ], [ 0, 0, 1, 0, 0 ], [ 0, 0, 0, 0, 1 ] ], [ [ 0, 0, 0, 0, 1 ], [ 0, 0, 1, 0, 0 ], [ 0, 0, 0, 1, 0 ], [ 0, 1, 0, 0, 0 ], [ -1, -1, -1, -1, -1 ] ] ], <action isomorphism> ), CompositionMapping( [ (2,5,4,3)(6,11,16,21)(7,15,19,23)(8,12,20,24)(9,13, 17,25)(10,14,18,22), (2,16,9)(3,21,15)(4,6,17)(5,11,23)(7,22,10)(8, 12,13)(14,18,19)(20,24,25) ] -> [ [ [ -E(5)^2, -E(5), E(5)^3-E(5)^4, E(5), 0, -E(5)^3 ], [ 0, 0, 1, 0, 0, 0 ], [ 0, -1, 0, 0, 0, 0 ], [ E(5)+E(5)^2+E(5)^4, 0, E(5)+E(5)^4, E(5)^2+E(5)^4, E(5)^3, -E(5)^4 ], [ E(5)+E(5)^3, E(5)^2, -E(5)-E(5)^2-E(5)^4, E(5)+E(5)^3+E(5)^4, -E(5)^4, 0 ], [ E(5)^2-E(5)^3, E(5), E(5)^4, E(5)^2, E(5), 0 ] ], [ [ 0, 0, E(5)^3, 0, 0, 0 ], [ -E(5)^3, 0, 0, 0, 0, 0 ], [ 0, -E(5)^4, 0, 0, 0, 0 ], [ E(5)^2, E(5), -E(5)^3+E(5)^4, -E(5), 0, E(5)^3 ], [ 0, 0, 0, 0, 0, -E(5)^4 ], [ -E(5)-E(5)^3-E(5)^4, 0, -E(5)-E(5)^3, -E(5)-E(5)^4, -1, E(5) ] ] ], <action isomorphism> ) ]