Varying group
This is a survey article related to:group
View other survey articles about group
In this article, we explore many variations that are possible in the definition of a group, that yield similar, though slightly weaker or stronger, structures.
To begin with, let us recall the three axioms that describe a group:
- The associativity of the binary operation
- The existence of a neutral element (viz, a left and right multiplicative identity)
- The existence of a multiplicative inverse for every element
The idea behind varying the notion of group would be to remove, or relax, one or more of these assumptions.
Contents
Relaxing the inverse element assumption
Group without inverses: Monoid
Further information: monoid
A set equipped with an associative binary operation having a neutral element (viz, left and right multiplicative identity) is termed a monoid. Monoids differ from groups in the sense of not necessarily having inverses. Examples of monoids are the set of natural numbers under multiplication, the set of integers under multiplication, the set of integers modulo under multiplication, the set of all functions from a set to itself (under composition), and more generally, the set of all endomorphisms of a structure.
Cancellation monoid
Further information: Cancellation monoid
Due to the existence of inverses in a group we can do left and right cancellation. Let's run through the proof quickly:
A natural question: are there monoids where we can do both left and right cancellation, viz:
and
even without assuming the existence of inverses? Actually there do exist such monoids, and such monoids are called cancellation monoids. The following are true:
- Any submonoid of a cancellation monoid is a cancellation monoid. In particular, any submonoid of a group is a cancellation monoid. Thus, the natural numbers under multiplication form a cancellation monoid, because they can be embedded in the group of nonzero rationals under multiplication.
- Any Abelian cancellation monoid can be embedded as a submonoid of an Abelian group. However, the corresponding statement is not true for general cancellation monoids: there are cancellation monoids that cannot be embedded into any group.
Relaxing the neutral element assumption
At first sight, it seems hard to have a notion of inverse without having a corresponding notion of identity element. However, there are clever ways of doing this, as we see below.
Without neutral element or inverse
Further information: Semigroup
A set equipped with an associative binary operation, without any assumption of neutral element or inverses, is termed a semigroup.
Inverse elements without reference to neutral element
For a group, we define two elements and
to be inverse if
. This definition of inverse element involves the use of neutral element. However, a more general notion of inverse would be of two elements which reverse the action of each other. In other words, doing
, then
may not land you right where you were to begin with, but doing
again should have the same effect as doing
once. In other words, we want:
and
.
This gives rise to notions of regular element and inverse element. A semigroup where every element is regular (respectively inverse) is termed a regular semigroup (respectively inverse semigroup).
Relaxing the associativity assumption
Of all the assumptions, associativity is the most common, and in some sense, the most basic assumption. Thus, relaxing, or removing, the associativity assumption, is a drastic step.
Set with only a binary operation
Further information: Magma
A set equipped with a binary operation (with no assumptions of asociativity, neutral element, or inverses) is termed a magma. In the literature, this is sometimes also referred to as a groupoid but the term groupoid also has other meanings.
The accessibility relation and quasigroups
Further information: Quasigroup
We can define the following relation on any magma. We say is left-accessible from
if there is a
such that
. Now, if the magma were associative, then left-accessibility would be a transitive relation. In general, we cannot say that about left-accessibility.
Similarly, we can define a relation of being right-accessible. Again, if the magma is associative, then right-accessibility is a transitive relation. In general, we cannot say that about right-accessibility.
Groups have a powerful property: every element is left-accessible, as well as right-accessible, from every other. This is a consequence of the existence of inverses. This suggests an analogous definition in the non-associative case.
A quasigroup is a magma with the property that given any and
there are unique elements
and
such that
. Equivalently, a quasigroup is a magma where:
- Every element is left-accessible, and right-accessible, from every other
- We can always do both left and right cancellation
Every associative quasigroup is a group.
Also, finite quasigroups are in bijection with Latin squares.
Algebra loops
Further information: Algebra loop
An algebra loop is a quasigroup which possesses a neutral element (for multiplication).
Power-associativity
Further information: Power-associative binary operation
A binary operation is said to be power-associative if all powers of an element associate, and hence for any natural number , all parenthesizations of
are equivalent. We can study quasigroups where power-associativity holds.
Alternativity
Further information: Alternative binary operation
A magma is said to be alternative if the submagma generated by any two elements is associative. We are often interested in alternative algebra loops.
Variations at the group algebra level
Some of the approaches we use to vary groups do not work at the level of group, but rather, require us to perform variation on the group algebra.
Further information: Varying the group algebra