Pages that link to "Dihedral group:D10"
The following pages link to Dihedral group:D10:
View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)- Alternating group:A5 (← links)
- Coxeter group (← links)
- Degree of irreducible representation divides index of abelian normal subgroup (← links)
- Degrees of irreducible representations (← links)
- Dihedral group (← links)
- Isoclinic groups (← links)
- Number of conjugacy classes (← links)
- Order of inner automorphism group bounds square of degree of irreducible representation (← links)
- Solvable not implies nilpotent (← links)
- Sylow number (← links)
- Symmetric group:S5 (← links)
- There are finitely many finite groups with bounded number of conjugacy classes (← links)
- Subgroup structure of symmetric group:S5 (← links)
- Alternating group:A6 (← links)
- Linear representation theory of dihedral groups (← links)
- Dihedral group:D20 (← links)
- SmallGroup(10,1) (redirect page) (← links)
- Finite group that is not isoclinic to a group of smaller order (← links)
- Sum of squares of degrees of irreducible representations equals order of group (← links)
- Commuting fraction (← links)
- Number of conjugacy classes in a subgroup may be more than in the whole group (← links)
- Subgroup structure of alternating group:A5 (← links)
- Groups of order 10 (← links)
- Element structure of dihedral groups (← links)
- Groups of order 5.2^n (← links)
- Minimal splitting field need not be cyclotomic (← links)
- Subgroup structure of projective special linear group of degree two over a finite field (← links)
- Linear representation of finite group over reals has invariant symmetric positive-definite bilinear form (← links)
- Quiz:Splitting field (← links)
- Quiz:Subgroup structure of symmetric group:S5 (← links)
- Quiz:Symmetric group:S5 (← links)
- Quiz:Subgroup structure of alternating group:A5 (← links)
- Field generated by character values need not be cyclotomic (← links)
- Subgroup structure of alternating group:A6 (← links)
- Dihedral and dicyclic groups are isoclinic (← links)