Quasicyclic group

From Groupprops
Revision as of 21:51, 10 August 2012 by Vipul (talk | contribs)
Jump to: navigation, search
This article is about a family of groups with a parameter that is prime. For any fixed value of the prime, we get a particular group.
View other such prime-parametrized groups


Let p be a prime number. The p-quasicyclic group is defined in the following equivalent ways:

  • It is the group, under multiplication, of all complex (p^n)^{th} roots of unity for all n.
  • It is the quotient L/\mathbb{Z} where L is the group of all rational numbers that can be expressed with denominator a power of p.
  • It is the direct limit of the chain of groups:

\mathbb{Z}/p\mathbb{Z} \to \mathbb{Z}/p^2\mathbb{Z} \to \dots \to \mathbb{Z}/p^n\mathbb{Z} \to .

where the maps are multiplication by p maps.

Particular cases

Prime number p p-quasicyclic group
2 2-quasicyclic group
3 3-quasicyclic group

Group properties

Property Satisfied? Explanation Corollary properties satisfied
abelian group Yes Hence, it is also a nilpotent group and a solvable group.
locally cyclic group Yes
locally finite group Yes
p-group Yes Hence, it is an abelian p-group, so also a nilpotent p-group.