38208
S

Property:Has query

From Groupprops
Jump to: navigation, search

Pages using the property "Has query"

Showing 250 pages using this property.

View (previous 250 | next 250) (20 | 50 | 100 | 250 | 500)

(
(1,1)-bi-Engel Lie ring +(1,1)-bi-Engel Lie ring  +, (1,1)-bi-Engel Lie ring  +, (1,1)-bi-Engel Lie ring  +,
(1,2)-Engel-type Lie ring +(1,2)-Engel-type Lie ring  +, (1,2)-Engel-type Lie ring  +, (1,2)-Engel-type Lie ring  +,
(2,3,7)-triangle group +(2,3,7)-triangle group  +, (2,3,7)-triangle group  +, (2,3,7)-triangle group  +,
(2,3,7)-von Dyck group +(2,3,7)-von Dyck group  +, (2,3,7)-von Dyck group  +, (2,3,7)-von Dyck group  +,
1
1-automorphism-invariant subgroup +1-automorphism-invariant subgroup  +, 1-automorphism-invariant subgroup  +, 1-automorphism-invariant subgroup  +,
1-closed subquandle of a group +1-closed subquandle of a group  +, 1-closed subquandle of a group  +, 1-closed subquandle of a group  +,
1-closed subset +1-closed subset  +
1-closed transversal not implies permutably complemented +1-closed transversal not implies permutably complemented  +, 1-closed transversal not implies permutably complemented  +, 1-closed transversal not implies permutably complemented  +,
1-coboundary for a group action +1-coboundary for a group action  +, 1-coboundary for a group action  +
1-cocycle for a group action +1-cocycle for a group action  +, 1-cocycle for a group action  +
1-completed subgroup +1-completed subgroup  +, 1-completed subgroup  +, 1-completed subgroup  +,
1-endomorphism-invariant subgroup +1-endomorphism-invariant subgroup  +, 1-endomorphism-invariant subgroup  +, 1-endomorphism-invariant subgroup  +,
1-isomorphic finite groups +1-isomorphic finite groups  +, 1-isomorphic finite groups  +, 1-isomorphic finite groups  +,
1-isomorphic groups +1-isomorphic groups  +, 1-isomorphic groups  +, 1-isomorphic groups  +,
2
2-Engel Lie ring +2-Engel Lie ring  +, 2-Engel Lie ring  +, 2-Engel Lie ring  +,
2-Engel group +2-Engel group  +, 2-Engel group  +, 2-Engel group  +,
2-Engel implies class three for groups +2-Engel implies class three for groups  +, 2-Engel implies class three for groups  +
2-Engel not implies class two for groups +2-Engel not implies class two for groups  +, 2-Engel not implies class two for groups  +
2-Sylow subgroup of general linear group:GL(2,3) +2-Sylow subgroup of general linear group:GL(2,3)  +, 2-Sylow subgroup of general linear group:GL(2,3)  +, 2-Sylow subgroup of general linear group:GL(2,3)  +
2-Sylow subgroup of special linear group:SL(2,3) +2-Sylow subgroup of special linear group:SL(2,3)  +, 2-Sylow subgroup of special linear group:SL(2,3)  +, 2-Sylow subgroup of special linear group:SL(2,3)  +,
2-Sylow subgroup of special linear group:SL(2,5) +2-Sylow subgroup of special linear group:SL(2,5)  +, 2-Sylow subgroup of special linear group:SL(2,5)  +, 2-Sylow subgroup of special linear group:SL(2,5)  +
2-coboundary for a group action +2-coboundary for a group action  +, 2-coboundary for a group action  +
2-cocycle for a group action +2-cocycle for a group action  +, 2-cocycle for a group action  +
2-cocycle for trivial group action +2-cocycle for trivial group action  +, 2-cocycle for trivial group action  +, 2-cocycle for trivial group action  +,
2-core of general linear group:GL(2,3) +2-core of general linear group:GL(2,3)  +, 2-core of general linear group:GL(2,3)  +, 2-core of general linear group:GL(2,3)  +,
2-divisible group +2-divisible group  +, 2-divisible group  +, 2-divisible group  +,
2-generated group +2-generated group  +, 2-generated group  +, 2-generated group  +,
2-hypernormalized satisfies intermediate subgroup condition +2-hypernormalized satisfies intermediate subgroup condition  +, 2-hypernormalized satisfies intermediate subgroup condition  +, 2-hypernormalized satisfies intermediate subgroup condition  +,
2-hypernormalized subgroup +2-hypernormalized subgroup  +, 2-hypernormalized subgroup  +, 2-hypernormalized subgroup  +,
2-locally finite group +2-locally finite group  +, 2-locally finite group  +, 2-locally finite group  +,
2-locally nilpotent group +2-locally nilpotent group  +, 2-locally nilpotent group  +, 2-locally nilpotent group  +,
2-powered group +2-powered group  +, 2-powered group  +, 2-powered group  +,
2-powered nilpotent group +2-powered nilpotent group  +, 2-powered nilpotent group  +, 2-powered nilpotent group  +,
2-regular group action +2-regular group action  +, 2-regular group action  +, 2-regular group action  +,
2-sub-ideal of a Lie ring +2-sub-ideal of a Lie ring  +, 2-sub-ideal of a Lie ring  +, 2-sub-ideal of a Lie ring  +,
2-subnormal implies conjugate-join-closed subnormal +2-subnormal implies conjugate-join-closed subnormal  +, 2-subnormal implies conjugate-join-closed subnormal  +
2-subnormal implies conjugate-permutable +2-subnormal implies conjugate-permutable  +, 2-subnormal implies conjugate-permutable  +, 2-subnormal implies conjugate-permutable  +,
2-subnormal implies join-transitively subnormal +2-subnormal implies join-transitively subnormal  +, 2-subnormal implies join-transitively subnormal  +, 2-subnormal implies join-transitively subnormal  +,
2-subnormal not implies automorph-permutable +2-subnormal not implies automorph-permutable  +, 2-subnormal not implies automorph-permutable  +, 2-subnormal not implies automorph-permutable  +,
2-subnormal not implies hypernormalized +2-subnormal not implies hypernormalized  +, 2-subnormal not implies hypernormalized  +, 2-subnormal not implies hypernormalized  +,
2-subnormal subgroup +2-subnormal subgroup  +, 2-subnormal subgroup  +, 2-subnormal subgroup  +,
2-subnormal subloop +2-subnormal subloop  +, 2-subnormal subloop  +
2-subnormality is conjugate-join-closed +2-subnormality is conjugate-join-closed  +, 2-subnormality is conjugate-join-closed  +, 2-subnormality is conjugate-join-closed  +,
2-subnormality is not finite-join-closed +2-subnormality is not finite-join-closed  +, 2-subnormality is not finite-join-closed  +, 2-subnormality is not finite-join-closed  +
2-subnormality is not finite-upper join-closed +2-subnormality is not finite-upper join-closed  +, 2-subnormality is not finite-upper join-closed  +, 2-subnormality is not finite-upper join-closed  +
2-subnormality is not transitive +2-subnormality is not transitive  +, 2-subnormality is not transitive  +
2-subnormality is strongly intersection-closed +2-subnormality is strongly intersection-closed  +, 2-subnormality is strongly intersection-closed  +, 2-subnormality is strongly intersection-closed  +,
2-torsion-free group +2-torsion-free group  +, 2-torsion-free group  +, 2-torsion-free group  +,
2-torsion-free group of nilpotency class two +2-torsion-free group of nilpotency class two  +, 2-torsion-free group of nilpotency class two  +, 2-torsion-free group of nilpotency class two  +,
3
3-Engel Lie ring +3-Engel Lie ring  +, 3-Engel Lie ring  +, 3-Engel Lie ring  +,
3-Engel group +3-Engel group  +, 3-Engel group  +, 3-Engel group  +,
3-Engel implies locally nilpotent for groups +3-Engel implies locally nilpotent for groups  +, 3-Engel implies locally nilpotent for groups  +
3-abelian group +3-abelian group  +, 3-abelian group  +, 3-abelian group  +,
3-cocycle for a group action +3-cocycle for a group action  +, 3-cocycle for a group action  +
3-locally nilpotent Lie ring +3-locally nilpotent Lie ring  +, 3-locally nilpotent Lie ring  +, 3-locally nilpotent Lie ring  +,
3-locally nilpotent group +3-locally nilpotent group  +, 3-locally nilpotent group  +, 3-locally nilpotent group  +,
3-step group implies solvable CN-group +3-step group implies solvable CN-group  +, 3-step group implies solvable CN-group  +, 3-step group implies solvable CN-group  +
3-subnormal implies finite-conjugate-join-closed subnormal +3-subnormal implies finite-conjugate-join-closed subnormal  +, 3-subnormal implies finite-conjugate-join-closed subnormal  +
3-subnormal not implies finite-automorph-join-closed subnormal +3-subnormal not implies finite-automorph-join-closed subnormal  +, 3-subnormal not implies finite-automorph-join-closed subnormal  +, 3-subnormal not implies finite-automorph-join-closed subnormal  +,
3-subnormal subgroup +3-subnormal subgroup  +, 3-subnormal subgroup  +, 3-subnormal subgroup  +,
3-transposition group +3-transposition group  +, 3-transposition group  +, 3-transposition group  +,
4
4-Engel implies locally nilpotent for groups +4-Engel implies locally nilpotent for groups  +, 4-Engel implies locally nilpotent for groups  +
4-subnormal not implies finite-conjugate-join-closed subnormal +4-subnormal not implies finite-conjugate-join-closed subnormal  +, 4-subnormal not implies finite-conjugate-join-closed subnormal  +, 4-subnormal not implies finite-conjugate-join-closed subnormal  +,
4-subnormal subgroup +4-subnormal subgroup  +, 4-subnormal subgroup  +, 4-subnormal subgroup  +,
A
A-group +A-group  +, A-group  +, A-group  +,
A3 in A4 +A3 in A4  +, A3 in A4  +, A3 in A4  +
A3 in A5 +A3 in A5  +, A3 in A5  +, A3 in A5  +
A3 in S3 +A3 in S3  +, A3 in S3  +, A3 in S3  +,
A3 in S4 +A3 in S4  +, A3 in S4  +, A3 in S4  +,
A3 in S5 +A3 in S5  +, A3 in S5  +, A3 in S5  +
A4 in A5 +A4 in A5  +, A4 in A5  +, A4 in A5  +
A4 in S4 +A4 in S4  +, A4 in S4  +, A4 in S4  +,
A5 in A6 +A5 in A6  +, A5 in A6  +, A5 in A6  +
A5 in S5 +A5 in S5  +, A5 in S5  +, A5 in S5  +,
A6 in S6 +A6 in S6  +, A6 in S6  +, A6 in S6  +,
ACIC is characteristic subgroup-closed +ACIC is characteristic subgroup-closed  +, ACIC is characteristic subgroup-closed  +, ACIC is characteristic subgroup-closed  +,
ACU-closed group property +ACU-closed group property  +, ACU-closed group property  +, ACU-closed group property  +,
ACU-closed subgroup property +ACU-closed subgroup property  +, ACU-closed subgroup property  +, ACU-closed subgroup property  +,
AEP does not satisfy intermediate subgroup condition +AEP does not satisfy intermediate subgroup condition  +, AEP does not satisfy intermediate subgroup condition  +
AEP-subgroup +AEP-subgroup  +, AEP-subgroup  +, AEP-subgroup  +,
AG98 +AG98  +, AG98  +, AG98  +
AGV12 +AGV12  +, AGV12  +, AGV12  +,
APS homomorphism +APS homomorphism  +, APS homomorphism  +, APS homomorphism  +,
APS of groups +APS of groups  +, APS of groups  +, APS of groups  +,
APS-on-APS action +APS-on-APS action  +, APS-on-APS action  +
Abelian IAPS +Abelian IAPS  +, Abelian IAPS  +
Abelian Lie algebra +Abelian Lie algebra  +, Abelian Lie algebra  +
Abelian Lie ring +Abelian Lie ring  +, Abelian Lie ring  +, Abelian Lie ring  +,
Abelian Sylow subgroup +Abelian Sylow subgroup  +, Abelian Sylow subgroup  +, Abelian Sylow subgroup  +,
Abelian and pronormal implies SCDIN +Abelian and pronormal implies SCDIN  +, Abelian and pronormal implies SCDIN  +
Abelian automorphism group implies class two +Abelian automorphism group implies class two  +, Abelian automorphism group implies class two  +
Abelian automorphism group not implies abelian +Abelian automorphism group not implies abelian  +, Abelian automorphism group not implies abelian  +
Abelian automorphism group not implies cyclic +Abelian automorphism group not implies cyclic  +, Abelian automorphism group not implies cyclic  +
Abelian central factor equals central subgroup +Abelian central factor equals central subgroup  +
Abelian characteristic is not join-closed +Abelian characteristic is not join-closed  +, Abelian characteristic is not join-closed  +
Abelian characteristic subgroup +Abelian characteristic subgroup  +, Abelian characteristic subgroup  +, Abelian characteristic subgroup  +,
Abelian direct factor +Abelian direct factor  +, Abelian direct factor  +, Abelian direct factor  +,
Abelian fully invariant subgroup +Abelian fully invariant subgroup  +, Abelian fully invariant subgroup  +, Abelian fully invariant subgroup  +,
Abelian group +Abelian group  +, Abelian group  +, Abelian group  +,
Abelian group that is finitely generated as a module over the ring of integers localized at a set of primes +Abelian group that is finitely generated as a module over the ring of integers localized at a set of primes  +, Abelian group that is finitely generated as a module over the ring of integers localized at a set of primes  +
Abelian hereditarily normal subgroup +Abelian hereditarily normal subgroup  +, Abelian hereditarily normal subgroup  +, Abelian hereditarily normal subgroup  +,
Abelian ideal +Abelian ideal  +, Abelian ideal  +
Abelian implies ACIC +Abelian implies ACIC  +, Abelian implies ACIC  +, Abelian implies ACIC  +,
Abelian implies every element is automorphic to its inverse +Abelian implies every element is automorphic to its inverse  +, Abelian implies every element is automorphic to its inverse  +
Abelian implies every subgroup is potentially characteristic +Abelian implies every subgroup is potentially characteristic  +, Abelian implies every subgroup is potentially characteristic  +
Abelian implies nilpotent +Abelian implies nilpotent  +, Abelian implies nilpotent  +, Abelian implies nilpotent  +,
Abelian implies self-centralizing in holomorph +Abelian implies self-centralizing in holomorph  +, Abelian implies self-centralizing in holomorph  +
Abelian marginal subgroup +Abelian marginal subgroup  +, Abelian marginal subgroup  +, Abelian marginal subgroup  +,
Abelian multiplicative Lie ring +Abelian multiplicative Lie ring  +, Abelian multiplicative Lie ring  +, Abelian multiplicative Lie ring  +,
Abelian normal is not join-closed +Abelian normal is not join-closed  +, Abelian normal is not join-closed  +, Abelian normal is not join-closed  +,
Abelian normal not implies central +Abelian normal not implies central  +, Abelian normal not implies central  +, Abelian normal not implies central  +,
Abelian normal subgroup +Abelian normal subgroup  +, Abelian normal subgroup  +, Abelian normal subgroup  +,
Abelian normal subgroup of maximum order +Abelian normal subgroup of maximum order  +, Abelian normal subgroup of maximum order  +, Abelian normal subgroup of maximum order  +,
Abelian permutable complement to core-free subgroup is-self-centralizing +Abelian permutable complement to core-free subgroup is-self-centralizing  +
Abelian pronormal subgroup +Abelian pronormal subgroup  +, Abelian pronormal subgroup  +, Abelian pronormal subgroup  +,
Abelian subgroup +Abelian subgroup  +, Abelian subgroup  +, Abelian subgroup  +,
Abelian subgroup of maximum order +Abelian subgroup of maximum order  +, Abelian subgroup of maximum order  +, Abelian subgroup of maximum order  +,
Abelian subgroup of maximum rank +Abelian subgroup of maximum rank  +, Abelian subgroup of maximum rank  +, Abelian subgroup of maximum rank  +,
Abelian subgroup structure of groups of order 128 +Abelian subgroup structure of groups of order 128  +
Abelian subgroup structure of groups of order 16 +Abelian subgroup structure of groups of order 16  +
Abelian subgroup structure of groups of order 256 +Abelian subgroup structure of groups of order 256  +
Abelian subgroup structure of groups of order 2^n +Abelian subgroup structure of groups of order 2^n  +
Abelian subgroup structure of groups of order 32 +Abelian subgroup structure of groups of order 32  +
Abelian subgroup structure of groups of order 512 +Abelian subgroup structure of groups of order 512  +
Abelian subgroup structure of groups of order 64 +Abelian subgroup structure of groups of order 64  +
Abelian subnormal subgroup +Abelian subnormal subgroup  +, Abelian subnormal subgroup  +, Abelian subnormal subgroup  +,
Abelian verbal subgroup +Abelian verbal subgroup  +, Abelian verbal subgroup  +, Abelian verbal subgroup  +,
Abelian-completed subgroup +Abelian-completed subgroup  +, Abelian-completed subgroup  +, Abelian-completed subgroup  +,
Abelian-extensible automorphism +Abelian-extensible automorphism  +, Abelian-extensible automorphism  +, Abelian-extensible automorphism  +,
Abelian-extensible automorphism-invariant subgroup +Abelian-extensible automorphism-invariant subgroup  +, Abelian-extensible automorphism-invariant subgroup  +, Abelian-extensible automorphism-invariant subgroup  +,
Abelian-extensible endomorphism +Abelian-extensible endomorphism  +, Abelian-extensible endomorphism  +, Abelian-extensible endomorphism  +,
Abelian-extensible endomorphism-invariant subgroup +Abelian-extensible endomorphism-invariant subgroup  +, Abelian-extensible endomorphism-invariant subgroup  +, Abelian-extensible endomorphism-invariant subgroup  +,
Abelian-potentially characteristic subgroup +Abelian-potentially characteristic subgroup  +, Abelian-potentially characteristic subgroup  +, Abelian-potentially characteristic subgroup  +,
Abelian-potentially verbal subgroup +Abelian-potentially verbal subgroup  +, Abelian-potentially verbal subgroup  +, Abelian-potentially verbal subgroup  +,
Abelian-quotient not implies cocentral +Abelian-quotient not implies cocentral  +, Abelian-quotient not implies cocentral  +, Abelian-quotient not implies cocentral  +,
Abelian-quotient not implies kernel of a bihomomorphism +Abelian-quotient not implies kernel of a bihomomorphism  +, Abelian-quotient not implies kernel of a bihomomorphism  +, Abelian-quotient not implies kernel of a bihomomorphism  +,
Abelian-quotient subgroup +Abelian-quotient subgroup  +, Abelian-quotient subgroup  +, Abelian-quotient subgroup  +,
Abelian-quotient-pullbackable automorphism-invariant subgroup +Abelian-quotient-pullbackable automorphism-invariant subgroup  +, Abelian-quotient-pullbackable automorphism-invariant subgroup  +, Abelian-quotient-pullbackable automorphism-invariant subgroup  +,
Abelian-tautological subgroup property +Abelian-tautological subgroup property  +, Abelian-tautological subgroup property  +, Abelian-tautological subgroup property  +,
Abelianness is 2-local +Abelianness is 2-local  +, Abelianness is 2-local  +, Abelianness is 2-local  +,
Abelianness is directed union-closed +Abelianness is directed union-closed  +, Abelianness is directed union-closed  +, Abelianness is directed union-closed  +,
Abelianness is quotient-closed +Abelianness is quotient-closed  +, Abelianness is quotient-closed  +, Abelianness is quotient-closed  +,
Abelianness is subgroup-closed +Abelianness is subgroup-closed  +, Abelianness is subgroup-closed  +, Abelianness is subgroup-closed  +,
Abelianness-forcing number +Abelianness-forcing number  +, Abelianness-forcing number  +, Abelianness-forcing number  +,
Abhyankar's conjecture +Abhyankar's conjecture  +
Abnormal implies WNSCC +Abnormal implies WNSCC  +, Abnormal implies WNSCC  +
Abnormal normalizer not implies pronormal +Abnormal normalizer not implies pronormal  +, Abnormal normalizer not implies pronormal  +, Abnormal normalizer not implies pronormal  +,
Abnormal subgroup +Abnormal subgroup  +, Abnormal subgroup  +, Abnormal subgroup  +,
Absolute element for polarity +Absolute element for polarity  +, Absolute element for polarity  +
Absolutely normal subgroup +Absolutely normal subgroup  +, Absolutely normal subgroup  +, Absolutely normal subgroup  +,
Absolutely regular p-group +Absolutely regular p-group  +, Absolutely regular p-group  +, Absolutely regular p-group  +,
Absolutely simple group +Absolutely simple group  +, Absolutely simple group  +, Absolutely simple group  +,
Action-isomorph-free subgroup +Action-isomorph-free subgroup  +, Action-isomorph-free subgroup  +, Action-isomorph-free subgroup  +,
Additive combinatorics of cyclic group:Z5 +Additive combinatorics of cyclic group:Z5  +
Additive combinatorics of cyclic group:Z7 +Additive combinatorics of cyclic group:Z7  +
Additive group of a field implies characteristic in holomorph +Additive group of a field implies characteristic in holomorph  +, Additive group of a field implies characteristic in holomorph  +
Adjoint group structures for cyclic group:Z4 +Adjoint group structures for cyclic group:Z4  +
Adjoint group structures for cyclic group:Z8 +Adjoint group structures for cyclic group:Z8  +
Adjoint group structures for groups of order 8 +Adjoint group structures for groups of order 8  +
Adjoint group structures for quaternion group +Adjoint group structures for quaternion group  +
Algebra group +Algebra group  +, Algebra group  +, Algebra group  +,
Algebra group implies power degree group for field size +Algebra group implies power degree group for field size  +, Algebra group implies power degree group for field size  +
Algebra group structures for Klein four-group +Algebra group structures for Klein four-group  +
Algebra group structures for cyclic group:Z4 +Algebra group structures for cyclic group:Z4  +
Algebra group structures for dihedral group:D8 +Algebra group structures for dihedral group:D8  +
Algebra group structures for direct product of Z4 and Z2 +Algebra group structures for direct product of Z4 and Z2  +
Algebra group structures for elementary abelian group:E8 +Algebra group structures for elementary abelian group:E8  +
Algebra group structures for groups of order 4 +Algebra group structures for groups of order 4  +
Algebra group structures for groups of order 8 +Algebra group structures for groups of order 8  +
Algebra group structures for groups of prime-cube order +Algebra group structures for groups of prime-cube order  +
Algebra group structures for quaternion group +Algebra group structures for quaternion group  +
Algebraic automorphism +Algebraic automorphism  +, Algebraic automorphism  +, Algebraic automorphism  +,
Algebraic group +Algebraic group  +, Algebraic group  +, Algebraic group  +
Algebraic group interpretations of dihedral group:D8 +Algebraic group interpretations of dihedral group:D8  +
Algebraic group interpretations of groups of order 8 +Algebraic group interpretations of groups of order 8  +
Algebraic subgroup +Algebraic subgroup  +, Algebraic subgroup  +, Algebraic subgroup  +,
Algebraically closed group +Algebraically closed group  +, Algebraically closed group  +, Algebraically closed group  +,
Algebraically closed implies simple +Algebraically closed implies simple  +, Algebraically closed implies simple  +
All cumulative conjugacy class size statistics values divide the order of the group for groups up to prime-fifth order +All cumulative conjugacy class size statistics values divide the order of the group for groups up to prime-fifth order  +, All cumulative conjugacy class size statistics values divide the order of the group for groups up to prime-fifth order  +
All partial sum values of squares of degrees of irreducible representations divide the order of the group for groups up to prime-fifth order +All partial sum values of squares of degrees of irreducible representations divide the order of the group for groups up to prime-fifth order  +, All partial sum values of squares of degrees of irreducible representations divide the order of the group for groups up to prime-fifth order  +
Almost normal subgroup +Almost normal subgroup  +, Almost normal subgroup  +, Almost normal subgroup  +,
Almost quasisimple group +Almost quasisimple group  +, Almost quasisimple group  +, Almost quasisimple group  +,
Almost simple group +Almost simple group  +, Almost simple group  +, Almost simple group  +,
Almost subnormal subgroup +Almost subnormal subgroup  +, Almost subnormal subgroup  +, Almost subnormal subgroup  +,
Almostsimplegeneration +Almostsimplegeneration  +, Almostsimplegeneration  +, Almostsimplegeneration  +
AlononSnevily +AlononSnevily  +, AlononSnevily  +
Alperin weight conjecture +Alperin weight conjecture  +
AlperinLargeAbelian +AlperinLargeAbelian  +, AlperinLargeAbelian  +
Alternating group +Alternating group  +, Alternating group  +, Alternating group  +,
Alternating group:A10 +Alternating group:A10  +, Alternating group:A10  +, Alternating group:A10  +,
Alternating group:A11 +Alternating group:A11  +, Alternating group:A11  +, Alternating group:A11  +,
Alternating group:A12 +Alternating group:A12  +, Alternating group:A12  +, Alternating group:A12  +,
Alternating group:A13 +Alternating group:A13  +, Alternating group:A13  +, Alternating group:A13  +,
Alternating group:A14 +Alternating group:A14  +, Alternating group:A14  +, Alternating group:A14  +,
Alternating group:A4 +Alternating group:A4  +, Alternating group:A4  +, Alternating group:A4  +,
Alternating group:A5 +Alternating group:A5  +, Alternating group:A5  +, Alternating group:A5  +,
Alternating group:A6 +Alternating group:A6  +, Alternating group:A6  +, Alternating group:A6  +,
Alternating group:A7 +Alternating group:A7  +, Alternating group:A7  +, Alternating group:A7  +,
Alternating group:A8 +Alternating group:A8  +, Alternating group:A8  +, Alternating group:A8  +,
Alternating group:A9 +Alternating group:A9  +, Alternating group:A9  +, Alternating group:A9  +,
Alternating implies flexible +Alternating implies flexible  +, Alternating implies flexible  +
Alternative implies powers up to the fifth are well-defined +Alternative implies powers up to the fifth are well-defined  +, Alternative implies powers up to the fifth are well-defined  +
Alternative loop +Alternative loop  +
Alternative magma +Alternative magma  +, Alternative magma  +, Alternative magma  +,
Alternative ring +Alternative ring  +, Alternative ring  +
Amalgam-characteristic implies image-potentially characteristic +Amalgam-characteristic implies image-potentially characteristic  +, Amalgam-characteristic implies image-potentially characteristic  +
Amalgam-characteristic implies potentially characteristic +Amalgam-characteristic implies potentially characteristic  +, Amalgam-characteristic implies potentially characteristic  +, Amalgam-characteristic implies potentially characteristic  +,
Amalgam-characteristic subgroup +Amalgam-characteristic subgroup  +, Amalgam-characteristic subgroup  +, Amalgam-characteristic subgroup  +,
Amalgam-normal-subhomomorph-containing subgroup +Amalgam-normal-subhomomorph-containing subgroup  +, Amalgam-normal-subhomomorph-containing subgroup  +, Amalgam-normal-subhomomorph-containing subgroup  +,
Amalgam-strictly characteristic subgroup +Amalgam-strictly characteristic subgroup  +, Amalgam-strictly characteristic subgroup  +, Amalgam-strictly characteristic subgroup  +,
Amalgamated free factor +Amalgamated free factor  +, Amalgamated free factor  +, Amalgamated free factor  +,
Amalgamated free product of Z and Z over 2Z +Amalgamated free product of Z and Z over 2Z  +, Amalgamated free product of Z and Z over 2Z  +, Amalgamated free product of Z and Z over 2Z  +,
Amalgamated free product of two copies of group of rational numbers over group of integers +Amalgamated free product of two copies of group of rational numbers over group of integers  +, Amalgamated free product of two copies of group of rational numbers over group of integers  +, Amalgamated free product of two copies of group of rational numbers over group of integers  +,
Ambivalence is direct product-closed +Ambivalence is direct product-closed  +, Ambivalence is direct product-closed  +, Ambivalence is direct product-closed  +,
Ambivalence is quotient-closed +Ambivalence is quotient-closed  +, Ambivalence is quotient-closed  +, Ambivalence is quotient-closed  +,
Ambivalent group +Ambivalent group  +, Ambivalent group  +, Ambivalent group  +,
Ambivalent not implies strongly ambivalent +Ambivalent not implies strongly ambivalent  +, Ambivalent not implies strongly ambivalent  +
Amenable discrete group +Amenable discrete group  +, Amenable discrete group  +, Amenable discrete group  +,
Analogue of critical subgroup theorem for nilpotent Lie rings +Analogue of critical subgroup theorem for nilpotent Lie rings  +, Analogue of critical subgroup theorem for nilpotent Lie rings  +
Andrews-Curtis conjecture +Andrews-Curtis conjecture  +
Antitransitive subgroup property +Antitransitive subgroup property  +, Antitransitive subgroup property  +, Antitransitive subgroup property  +,
Approximate centralizer +Approximate centralizer  +
Approximate normalizer +Approximate normalizer  +, Approximate normalizer  +, Approximate normalizer  +,
Arithmetic functions for groups of order 2^n +Arithmetic functions for groups of order 2^n  +, Arithmetic functions for groups of order 2^n  +, Arithmetic functions for groups of order 2^n  +,
Arithmetic functions for groups of order 3^n +Arithmetic functions for groups of order 3^n  +
Artin L-function +Artin L-function  +, Artin L-function  +
Artin's induction theorem +Artin's induction theorem  +, Artin's induction theorem  +, Artin's induction theorem  +
Artinian group +Artinian group  +, Artinian group  +, Artinian group  +,
Artinian implies co-Hopfian +Artinian implies co-Hopfian  +, Artinian implies co-Hopfian  +
Artinian implies periodic +Artinian implies periodic  +, Artinian implies periodic  +
Ascendant not implies subnormal +Ascendant not implies subnormal  +, Ascendant not implies subnormal  +, Ascendant not implies subnormal  +,
Ascendant subgroup +Ascendant subgroup  +, Ascendant subgroup  +, Ascendant subgroup  +,
Ascending chain condition on normal subgroups implies Hopfian +Ascending chain condition on normal subgroups implies Hopfian  +, Ascending chain condition on normal subgroups implies Hopfian  +
Ascending chain condition on subnormal subgroups implies subnormal join property +Ascending chain condition on subnormal subgroups implies subnormal join property  +, Ascending chain condition on subnormal subgroups implies subnormal join property  +, Ascending chain condition on subnormal subgroups implies subnormal join property  +,
Ascending chain condition on subnormal subgroups is normal subgroup-closed +Ascending chain condition on subnormal subgroups is normal subgroup-closed  +, Ascending chain condition on subnormal subgroups is normal subgroup-closed  +, Ascending chain condition on subnormal subgroups is normal subgroup-closed  +,
AschbacherGuralnick +AschbacherGuralnick  +, AschbacherGuralnick  +, AschbacherGuralnick  +
Associated direct sum of a subnormal series +Associated direct sum of a subnormal series  +, Associated direct sum of a subnormal series  +, Associated direct sum of a subnormal series  +,
Asymptotically fixed-depth join-transitively subnormal subgroup +Asymptotically fixed-depth join-transitively subnormal subgroup  +, Asymptotically fixed-depth join-transitively subnormal subgroup  +, Asymptotically fixed-depth join-transitively subnormal subgroup  +,
At most n elements of order dividing n implies every finite subgroup is cyclic +At most n elements of order dividing n implies every finite subgroup is cyclic  +, At most n elements of order dividing n implies every finite subgroup is cyclic  +
Auto-invariance property +Auto-invariance property  +, Auto-invariance property  +, Auto-invariance property  +,
Autoclinism-invariant subgroup +Autoclinism-invariant subgroup  +, Autoclinism-invariant subgroup  +, Autoclinism-invariant subgroup  +,
Automatic group +Automatic group  +, Automatic group  +, Automatic group  +,
Automorph-commensurable subgroup +Automorph-commensurable subgroup  +, Automorph-commensurable subgroup  +, Automorph-commensurable subgroup  +,
Automorph-conjugacy is centralizer-closed +Automorph-conjugacy is centralizer-closed  +, Automorph-conjugacy is centralizer-closed  +, Automorph-conjugacy is centralizer-closed  +,
Automorph-conjugacy is normalizer-closed +Automorph-conjugacy is normalizer-closed  +, Automorph-conjugacy is normalizer-closed  +, Automorph-conjugacy is normalizer-closed  +,
Automorph-conjugacy is not finite-conjugate-intersection-closed +Automorph-conjugacy is not finite-conjugate-intersection-closed  +, Automorph-conjugacy is not finite-conjugate-intersection-closed  +
Automorph-conjugacy is not finite-intersection-closed +Automorph-conjugacy is not finite-intersection-closed  +, Automorph-conjugacy is not finite-intersection-closed  +
Automorph-conjugacy is not finite-join-closed +Automorph-conjugacy is not finite-join-closed  +, Automorph-conjugacy is not finite-join-closed  +, Automorph-conjugacy is not finite-join-closed  +
Automorph-conjugacy is transitive +Automorph-conjugacy is transitive  +, Automorph-conjugacy is transitive  +, Automorph-conjugacy is transitive  +,