332
U

Property:GAP ID

From Groupprops
Jump to: navigation, search

Record

Number
"Number" is a type and predefined property provided by Semantic MediaWiki to represent numeric values.
, Text
This property is a special property in this wiki.

Pages using the property "GAP ID"

Showing 307 pages using this property.

View (previous 500 | next 500) (20 | 50 | 100 | 250 | 500)

C
Cyclic group:Z243 +243 (1)  +
Cyclic group:Z27 +27 (1)  +
Cyclic group:Z3 +3 (1)  +
Cyclic group:Z32 +32 (1)  +
Cyclic group:Z36 +36 (2)  +
Cyclic group:Z4 +4 (1)  +
Cyclic group:Z40 +40 (2)  +
Cyclic group:Z5 +5 (1)  +
Cyclic group:Z64 +64 (1)  +
Cyclic group:Z7 +7 (1)  +
Cyclic group:Z8 +8 (1)  +
Cyclic group:Z81 +81 (1)  +
Cyclic group:Z9 +9 (1)  +
D
Dicyclic group:Dic12 +12 (1)  +
Dicyclic group:Dic20 +20 (1)  +
Dicyclic group:Dic24 +24 (4)  +
Dihedral group:D10 +10 (1)  +
Dihedral group:D12 +12 (4)  +
Dihedral group:D128 +128 (161)  +
Dihedral group:D14 +14 (1)  +
Dihedral group:D16 +16 (7)  +
Dihedral group:D18 +18 (1)  +
Dihedral group:D20 +20 (4)  +
Dihedral group:D24 +24 (6)  +
Dihedral group:D256 +256 (539)  +
Dihedral group:D32 +32 (18)  +
Dihedral group:D64 +64 (52)  +
Dihedral group:D8 +8 (3)  +
Direct product of A4 and A4 +144 (184)  +
Direct product of A4 and D8 +96 (197)  +
Direct product of A4 and E8 +96 (228)  +
Direct product of A4 and Q8 +96 (199)  +
Direct product of A4 and S3 +72 (44)  +
Direct product of A4 and V4 +48 (49)  +
Direct product of A4 and Z2 +24 (13)  +
Direct product of A4 and Z3 +36 (11)  +
Direct product of A4 and Z4 +48 (31)  +
Direct product of A4 and Z4 and Z2 +96 (196)  +
Direct product of A4 and Z5 +60 (9)  +
Direct product of A4 and Z8 +96 (73)  +
Direct product of A5 and V4 +240 (190)  +
Direct product of A5 and Z2 +120 (35)  +
Direct product of A5 and Z4 +240 (92)  +
Direct product of A5 and Z7 +420 (13)  +
Direct product of A6 and Z2 +720 (766)  +
Direct product of D12 and Z2 +24 (14)  +
Direct product of D12 and Z3 +36 (12)  +
Direct product of D16 and V4 +64 (250)  +
Direct product of D16 and Z2 +32 (39)  +
Direct product of D16 and Z3 +48 (25)  +
Direct product of D16 and Z4 +64 (118)  +
Direct product of D32 and Z2 +64 (186)  +
Direct product of D8 and D8 +64 (226)  +
Direct product of D8 and E8 +64 (261)  +
Direct product of D8 and Q8 +64 (230)  +
Direct product of D8 and S3 +48 (38)  +
Direct product of D8 and V4 +32 (46)  +
Direct product of D8 and Z2 +16 (11)  +
Direct product of D8 and Z3 +24 (10)  +
Direct product of D8 and Z4 +32 (25)  +
Direct product of D8 and Z4 and Z2 +64 (196)  +
Direct product of D8 and Z5 +40 (10)  +
Direct product of D8 and Z6 +48 (45)  +
Direct product of D8 and Z7 +56 (9)  +
Direct product of Dic12 and Z2 +24 (7)  +
Direct product of E16 and Z4 +64 (260)  +
Direct product of E8 and Z3 +24 (15)  +
Direct product of E8 and Z4 +32 (45)  +
Direct product of M16 and V4 +64 (247)  +
Direct product of M16 and Z2 +32 (37)  +
Direct product of M16 and Z3 +48 (24)  +
Direct product of M16 and Z4 +64 (85)  +
Direct product of M27 and Z3 +81 (13)  +
Direct product of M32 and Z2 +64 (184)  +
Direct product of Q16 and V4 +64 (252)  +
Direct product of Q16 and Z2 +32 (41)  +
Direct product of Q16 and Z3 +48 (27)  +
Direct product of Q16 and Z4 +64 (120)  +
Direct product of Q32 and Z2 +64 (188)  +
Direct product of Q8 and Q8 +64 (239)  +
Direct product of Q8 and S3 +48 (40)  +
Direct product of Q8 and V4 +32 (47)  +
Direct product of Q8 and Z2 +16 (12)  +
Direct product of Q8 and Z3 +24 (11)  +
Direct product of Q8 and Z4 +32 (26)  +
Direct product of Q8 and Z5 +40 (11)  +
Direct product of S3 and S3 +36 (10)  +
Direct product of S3 and Z3 +18 (3)  +
Direct product of S3 and Z4 +24 (5)  +
Direct product of S4 and V4 +96 (226)  +
Direct product of S4 and Z2 +48 (48)  +
Direct product of S4 and Z3 +72 (42)  +
Direct product of S4 and Z4 +96 (186)  +
Direct product of S4 and Z5 +120 (37)  +
Direct product of S5 and Z2 +240 (189)  +
Direct product of SD16 and V4 +64 (251)  +
Direct product of SD16 and Z2 +32 (40)  +
Direct product of SD16 and Z3 +48 (26)  +
Direct product of SD16 and Z4 +64 (119)  +
Direct product of SD32 and Z2 +64 (187)  +
Direct product of SL(2,3) and V4 +96 (198)  +
Direct product of SL(2,3) and Z2 +48 (32)  +
Direct product of SL(2,3) and Z3 +72 (25)  +
Direct product of SL(2,3) and Z4 +96 (69)  +
Direct product of SL(2,5) and Z2 +240 (94)  +
Direct product of SmallGroup(16,13) and V4 +64 (263)  +
Direct product of SmallGroup(16,13) and Z2 +32 (48)  +
Direct product of SmallGroup(16,13) and Z4 +64 (198)  +
Direct product of SmallGroup(16,3) and V4 +64 (193)  +
Direct product of SmallGroup(16,3) and Z2 +32 (22)  +
Direct product of SmallGroup(16,3) and Z3 +48 (21)  +
Direct product of SmallGroup(16,3) and Z4 +64 (58)  +
Direct product of SmallGroup(16,4) and V4 +64 (194)  +
Direct product of SmallGroup(16,4) and Z2 +32 (23)  +
Direct product of SmallGroup(16,4) and Z4 +64 (59)  +
Direct product of SmallGroup(32,12) and Z2 +64 (103)  +
Direct product of SmallGroup(32,13) and Z2 +64 (106)  +
Direct product of SmallGroup(32,14) and Z2 +64 (107)  +
Direct product of SmallGroup(32,2) and Z2 +64 (56)  +
Direct product of SmallGroup(32,24) and Z2 +64 (195)  +
Direct product of SmallGroup(32,27) and Z2 +64 (202)  +
Direct product of SmallGroup(32,33) and Z2 +64 (209)  +
Direct product of SmallGroup(32,4) and Z2 +64 (84)  +
Direct product of SmallGroup(32,49) and Z2 +64 (264)  +
Direct product of SmallGroup(32,50) and Z2 +64 (265)  +
Direct product of Z10 and Z2 +20 (5)  +
Direct product of Z16 and V4 +64 (183)  +
Direct product of Z16 and Z2 +32 (16)  +
Direct product of Z16 and Z4 +64 (26)  +
Direct product of Z27 and E9 +243 (48)  +
Direct product of Z27 and Z3 +81 (5)  +
Direct product of Z27 and Z9 +243 (10)  +
Direct product of Z32 and Z2 +64 (50)  +
Direct product of Z4 and V4 +16 (10)  +
Direct product of Z4 and Z2 +8 (2)  +
Direct product of Z4 and Z4 +16 (2)  +
Direct product of Z4 and Z4 and V4 +64 (192)  +
Direct product of Z4 and Z4 and Z2 +32 (21)  +
Direct product of Z4 and Z4 and Z4 +64 (55)  +
Direct product of Z6 and Z2 +12 (5)  +
Direct product of Z6 and Z3 +18 (5)  +
Direct product of Z6 and Z4 +24 (9)  +
Direct product of Z8 and D8 +64 (115)  +
Direct product of Z8 and E8 +64 (246)  +
Direct product of Z8 and V4 +32 (36)  +
Direct product of Z8 and Z2 +16 (5)  +
Direct product of Z8 and Z4 +32 (3)  +
Direct product of Z8 and Z4 and V4 +128 (1601)  +
Direct product of Z8 and Z4 and Z2 +64 (83)  +
Direct product of Z8 and Z8 +64 (2)  +
Direct product of Z81 and Z3 +243 (23)  +
Direct product of Z9 and E27 +243 (61)  +
Direct product of Z9 and E9 +81 (11)  +
Direct product of Z9 and Z3 +27 (2)  +
Direct product of Z9 and Z9 +81 (2)  +
Direct product of Z9 and Z9 and Z3 +243 (31)  +
Direct product of holomorph of Z8 and Z2 +64 (254)  +
Direct product of prime-cube order group:U(3,3) and Z3 +81 (12)  +
Double cover of symmetric group:S5 of minus type +240 (89)  +
Double cover of symmetric group:S5 of plus type +240 (90)  +
E
Elementary abelian group:E16 +16 (14)  +
Elementary abelian group:E243 +243 (67)  +
Elementary abelian group:E27 +27 (5)  +
Elementary abelian group:E32 +32 (51)  +
Elementary abelian group:E64 +64 (267)  +
Elementary abelian group:E8 +8 (5)  +
Elementary abelian group:E81 +81 (15)  +
Elementary abelian group:E9 +9 (2)  +
F
Faithful semidirect product of E8 and Z4 +32 (6)  +
Free product of class two of two Klein four-groups +256 (8935)  +
G
General affine group:GA(1,5) +20 (3)  +
General affine group:GA(1,7) +42 (1)  +
General affine group:GA(1,8) +56 (11)  +
General affine group:GA(1,9) +72 (39)  +
General affine group:GA(2,3) +432 (734)  +
General linear group:GL(2,3) +48 (29)  +
General linear group:GL(2,4) +180 (19)  +
General linear group:GL(2,Z4) +96 (195)  +
General semiaffine group:GammaA(1,9) +144 (182)  +
General semilinear group:GammaL(1,8) +21 (1)  +
Generalized dihedral group for E9 +18 (4)  +
Generalized dihedral group for direct product of Z4 and Z4 +32 (34)  +
Generalized quaternion group:Q16 +16 (9)  +
Generalized quaternion group:Q32 +32 (20)  +
Generalized quaternion group:Q64 +64 (54)  +
H
Holomorph of D8 +64 (134)  +
Holomorph of Z8 +32 (43)  +
Holomorph of Z9 +54 (6)  +
I
Inner automorphism group of wreath product of Z2 and A4 +96 (70)  +
Inner automorphism group of wreath product of Z2 and A5 +960 (11358)  +
Inner automorphism group of wreath product of Z5 and Z5 +3,125 (30)  +
Inner holomorph of D8 +32 (49)  +
K
Klein four-group +4 (2)  +
M
M16 +16 (6)  +
M27 +27 (4)  +
M32 +32 (17)  +
M64 +64 (51)  +
M81 +81 (6)  +
Mathieu group:M10 +720 (765)  +
Mathieu group:M9 +72 (41)  +
N
Nontrivial semidirect product of Z3 and Z8 +24 (1)  +
Nontrivial semidirect product of Z4 and Z16 +64 (44)  +
Nontrivial semidirect product of Z4 and Z4 +16 (4)  +
Nontrivial semidirect product of Z4 and Z8 +32 (12)  +
Nontrivial semidirect product of Z7 and Z9 +63 (1)  +
Nontrivial semidirect product of Z9 and Z9 +81 (4)  +
P
Panferov Lie group for 5 +3,125 (33)  +
Projective general linear group:PGL(2,11) +1,320 (133)  +
Projective general linear group:PGL(2,7) +336 (208)  +
Projective general linear group:PGL(2,9) +720 (764)  +
Projective general linear group:PGL(2,Z9) +648 (703)  +
Projective special linear group:PSL(2,11) +660 (13)  +
Projective special linear group:PSL(2,13) +1,092 (25)  +
Projective special linear group:PSL(2,8) +504 (156)  +
Projective special linear group:PSL(2,Z9) +324 (160)  +
Projective special linear group:PSL(3,2) +168 (42)  +
Q
Quaternion group +8 (4)  +
R
Ree group:Ree(3) +1,512 (779)  +
S
Semidihedral group:SD128 +128 (162)  +
Semidihedral group:SD16 +16 (8)  +
Semidihedral group:SD256 +256 (540)  +
Semidihedral group:SD32 +32 (19)  +
Semidihedral group:SD64 +64 (53)  +
Semidirect product of Z16 and Z4 of M-type +64 (27)  +
Semidirect product of Z16 and Z4 of dihedral type +64 (47)  +
Semidirect product of Z16 and Z4 of semidihedral type +64 (48)  +
Semidirect product of Z16 and Z4 via cube map +64 (46)  +
Semidirect product of Z16 and Z4 via fifth power map +64 (28)  +
Semidirect product of Z3 and D8 with action kernel V4 +24 (8)  +
Semidirect product of Z5 and Z8 via inverse map +40 (1)  +
Semidirect product of Z5 and Z8 via square map +40 (3)  +
Semidirect product of Z8 and Z4 of M-type +32 (4)  +
Semidirect product of Z8 and Z4 of dihedral type +32 (14)  +
Semidirect product of Z8 and Z4 of semidihedral type +32 (13)  +
Semidirect product of Z8 and Z8 of M-type +64 (3)  +
Semidirect product of Z8 and Z8 of dihedral type +64 (16)  +
Semidirect product of Z8 and Z8 of semidihedral type +64 (15)  +
SmallGroup(128,1015) +128 (1015)  +
SmallGroup(16,3) +16 (3)  +
SmallGroup(243,16) +243 (16)  +
SmallGroup(243,19) +243 (19)  +
SmallGroup(243,20) +243 (20)  +
SmallGroup(256,27799) +256 (27799)  +
SmallGroup(256,29626) +256 (29626)  +
SmallGroup(256,6745) +256 (6745)  +
SmallGroup(32,10) +32 (10)  +
SmallGroup(32,15) +32 (15)  +
SmallGroup(32,2) +32 (2)  +
SmallGroup(32,24) +32 (24)  +
SmallGroup(32,27) +32 (27)  +
SmallGroup(32,28) +32 (28)  +
SmallGroup(32,29) +32 (29)  +
SmallGroup(32,30) +32 (30)  +
SmallGroup(32,31) +32 (31)  +
SmallGroup(32,32) +32 (32)  +
SmallGroup(32,33) +32 (33)  +
SmallGroup(32,35) +32 (35)  +
SmallGroup(32,44) +32 (44)  +
SmallGroup(32,5) +32 (5)  +
SmallGroup(32,7) +32 (7)  +
SmallGroup(32,8) +32 (8)  +
SmallGroup(32,9) +32 (9)  +
SmallGroup(64,113) +64 (113)  +
SmallGroup(64,114) +64 (114)  +
SmallGroup(64,17) +64 (17)  +
SmallGroup(64,210) +64 (210)  +
SmallGroup(64,248) +64 (248)  +
SmallGroup(64,25) +64 (25)  +
SmallGroup(64,57) +64 (57)  +
SmallGroup(81,3) +81 (3)  +
SmallGroup(81,8) +81 (8)  +
SmallGroup(81,9) +81 (9)  +
Special affine group:SA(2,3) +216 (153)  +
Special linear group:SL(2,11) +1,320 (13)  +
Special linear group:SL(2,3) +24 (3)  +
Special linear group:SL(2,5) +120 (5)  +
Special linear group:SL(2,7) +336 (114)  +
Special linear group:SL(2,9) +720 (409)  +
Special linear group:SL(2,Z4) +48 (30)  +
Special linear group:SL(2,Z9) +648 (641)  +
Sylow subgroup of holomorph of Z27 +243 (22)  +
Symmetric group:S3 +6 (1)  +
Symmetric group:S4 +24 (12)  +
Symmetric group:S5 +120 (34)  +
Symmetric group:S6 +720 (763)  +
T
Triple cover of alternating group:A6 +1,080 (260)  +
Trivial group +1 (1)  +
U
Unitriangular matrix group of degree three over quotient of polynomial ring over F2 by square of indeterminate +64 (215)  +
Unitriangular matrix group:UT(3,3) +27 (3)  +
Unitriangular matrix group:UT(3,4) +64 (242)  +
Unitriangular matrix group:UT(3,7) +343 (3)  +
Unitriangular matrix group:UT(3,9) +729 (469)  +
Unitriangular matrix group:UT(3,Z4) +64 (18)  +
Unitriangular matrix group:UT(3,Z9) +729 (24)  +
Unitriangular matrix group:UT(4,2) +64 (138)  +
Unitriangular matrix group:UT(4,3) +729 (307)  +
W
Wreath product of A4 and Z2 +288 (1025)  +
Wreath product of D8 and Z2 +128 (928)  +
Wreath product of S3 and Z2 +72 (40)  +
Wreath product of Z2 and A4 +192 (201)  +
Wreath product of Z2 and A5 +1,920 (240997)  +
Wreath product of Z2 and Z4 +64 (32)  +
Wreath product of Z3 and S3 +162 (10)  +
Wreath product of Z3 and Z3 +81 (7)  +
Wreath product of Z4 and Z2 +32 (11)  +
Wreath product of Z5 and Z2 +50 (3)  +