332
U

Property:GAP ID

From Groupprops
Jump to: navigation, search

Record

Number
"Number" is a type and predefined property provided by Semantic MediaWiki to represent numeric values.
, Text
This property is a special property in this wiki.

Pages using the property "GAP ID"

Showing 100 pages using this property.

View (previous 100 | next 100) (20 | 50 | 100 | 250 | 500)

A
Alternating group:A4 +12 (3)  +
Alternating group:A5 +60 (5)  +
Alternating group:A6 +360 (118)  +
Automorphism group of alternating group:A6 +1,440 (5841)  +
B
Binary octahedral group +48 (28)  +
Burnside group:B(3,3) +2,187 (4487)  +
C
Central product of D16 and Z4 +32 (42)  +
Central product of D8 and Q8 +32 (50)  +
Central product of D8 and Z12 +48 (47)  +
Central product of D8 and Z16 +64 (185)  +
Central product of D8 and Z4 +16 (13)  +
Central product of D8 and Z8 +32 (38)  +
Central product of M16 and Z8 over common Z2 +64 (86)  +
Central product of SL(2,3) and Z4 +48 (33)  +
Central product of SL(2,5) and Z4 +240 (93)  +
Central product of UT(3,3) and Z9 +81 (14)  +
Central product of Z9 and wreath product of Z3 and Z3 +243 (55)  +
Cyclic group:Z10 +10 (2)  +
Cyclic group:Z12 +12 (2)  +
Cyclic group:Z128 +128 (1)  +
Cyclic group:Z16 +16 (1)  +
Cyclic group:Z18 +18 (2)  +
Cyclic group:Z2 +2 (1)  +
Cyclic group:Z20 +20 (2)  +
Cyclic group:Z24 +24 (2)  +
Cyclic group:Z243 +243 (1)  +
Cyclic group:Z27 +27 (1)  +
Cyclic group:Z3 +3 (1)  +
Cyclic group:Z32 +32 (1)  +
Cyclic group:Z36 +36 (2)  +
Cyclic group:Z4 +4 (1)  +
Cyclic group:Z40 +40 (2)  +
Cyclic group:Z5 +5 (1)  +
Cyclic group:Z64 +64 (1)  +
Cyclic group:Z7 +7 (1)  +
Cyclic group:Z8 +8 (1)  +
Cyclic group:Z81 +81 (1)  +
Cyclic group:Z9 +9 (1)  +
D
Dicyclic group:Dic12 +12 (1)  +
Dicyclic group:Dic20 +20 (1)  +
Dicyclic group:Dic24 +24 (4)  +
Dihedral group:D10 +10 (1)  +
Dihedral group:D12 +12 (4)  +
Dihedral group:D128 +128 (161)  +
Dihedral group:D14 +14 (1)  +
Dihedral group:D16 +16 (7)  +
Dihedral group:D18 +18 (1)  +
Dihedral group:D20 +20 (4)  +
Dihedral group:D24 +24 (6)  +
Dihedral group:D256 +256 (539)  +
Dihedral group:D32 +32 (18)  +
Dihedral group:D64 +64 (52)  +
Dihedral group:D8 +8 (3)  +
Direct product of A4 and A4 +144 (184)  +
Direct product of A4 and D8 +96 (197)  +
Direct product of A4 and E8 +96 (228)  +
Direct product of A4 and Q8 +96 (199)  +
Direct product of A4 and S3 +72 (44)  +
Direct product of A4 and V4 +48 (49)  +
Direct product of A4 and Z2 +24 (13)  +
Direct product of A4 and Z3 +36 (11)  +
Direct product of A4 and Z4 +48 (31)  +
Direct product of A4 and Z4 and Z2 +96 (196)  +
Direct product of A4 and Z5 +60 (9)  +
Direct product of A4 and Z8 +96 (73)  +
Direct product of A5 and V4 +240 (190)  +
Direct product of A5 and Z2 +120 (35)  +
Direct product of A5 and Z4 +240 (92)  +
Direct product of A5 and Z7 +420 (13)  +
Direct product of A6 and Z2 +720 (766)  +
Direct product of D12 and Z2 +24 (14)  +
Direct product of D12 and Z3 +36 (12)  +
Direct product of D16 and V4 +64 (250)  +
Direct product of D16 and Z2 +32 (39)  +
Direct product of D16 and Z3 +48 (25)  +
Direct product of D16 and Z4 +64 (118)  +
Direct product of D32 and Z2 +64 (186)  +
Direct product of D8 and D8 +64 (226)  +
Direct product of D8 and E8 +64 (261)  +
Direct product of D8 and Q8 +64 (230)  +
Direct product of D8 and S3 +48 (38)  +
Direct product of D8 and V4 +32 (46)  +
Direct product of D8 and Z2 +16 (11)  +
Direct product of D8 and Z3 +24 (10)  +
Direct product of D8 and Z4 +32 (25)  +
Direct product of D8 and Z4 and Z2 +64 (196)  +
Direct product of D8 and Z5 +40 (10)  +
Direct product of D8 and Z6 +48 (45)  +
Direct product of D8 and Z7 +56 (9)  +
Direct product of Dic12 and Z2 +24 (7)  +
Direct product of E16 and Z4 +64 (260)  +
Direct product of E8 and Z3 +24 (15)  +
Direct product of E8 and Z4 +32 (45)  +
Direct product of M16 and V4 +64 (247)  +
Direct product of M16 and Z2 +32 (37)  +
Direct product of M16 and Z3 +48 (24)  +
Direct product of M16 and Z4 +64 (85)  +
Direct product of M27 and Z3 +81 (13)  +
Direct product of M32 and Z2 +64 (184)  +