# Difference between revisions of "Isomorph-containing subgroup"

From Groupprops

(→Relation with other properties) |
(→Weaker properties) |
||

Line 45: | Line 45: | ||

|- | |- | ||

| [[Stronger than::injective endomorphism-invariant subgroup]] || invariant under any injective endomorphism of the whole group || || Can use same example as for characteristic not implies isomorph-containing, if finite || {{intermediate notions short|injective endomorphism-invariant subgroup|isomorph-containing subgroup}} | | [[Stronger than::injective endomorphism-invariant subgroup]] || invariant under any injective endomorphism of the whole group || || Can use same example as for characteristic not implies isomorph-containing, if finite || {{intermediate notions short|injective endomorphism-invariant subgroup|isomorph-containing subgroup}} | ||

− | + | |- | |

| [[Stronger than::intermediately injective endomorphism-invariant subgroup]] || injective endomorphism-invariant in every intermediate subgroup || || || {{intermediate notions short|intermediately injective endomorphism-invariant subgroup|isomorph-containing subgroup}} | | [[Stronger than::intermediately injective endomorphism-invariant subgroup]] || injective endomorphism-invariant in every intermediate subgroup || || || {{intermediate notions short|intermediately injective endomorphism-invariant subgroup|isomorph-containing subgroup}} | ||

|- | |- |

## Revision as of 00:31, 18 March 2019

BEWARE!This term is nonstandard and is being used locally within the wiki. [SHOW MORE]

This article defines a subgroup property: a property that can be evaluated to true/false given a group and a subgroup thereof, invariant under subgroup equivalence. View a complete list of subgroup properties[SHOW MORE]

## Definition

QUICK PHRASES: contains all isomorphic subgroups, weakly closed in any ambient group

A subgroup of a group is termed an **isomorph-containing subgroup** if it satisfies the following equivalent conditions:

- Whenever is a subgroup of isomorphic to , .
- If is a subgroup of , is weakly closed in with respect to .

### Equivalence of definitions

`Further information: Isomorph-containing iff weakly closed in any ambient group`

## Examples

VIEW: subgroups of groups satisfying this property | subgroups of groups dissatisfying this propertyVIEW: Related subgroup property satisfactions | Related subgroup property dissatisfactions

## Relation with other properties

### Stronger properties

Property | Meaning | Proof of implication | Proof of strictness (reverse implication failure) | Intermediate notions |
---|---|---|---|---|

isomorph-free subgroup | no other isomorphic subgroup (for a finite subgroup, and more generally, for a co-Hopfian subgroup, the two properties are equivalent) | obvious | any example of a non-co-Hopfian group as a subgroup of itself -- such as the group of integers | |

homomorph-containing subgroup | contains any homomorphic image of itself in the group | obvious; isomorphs are also homomorphic images | cyclic maximal subgroup of dihedral group:D8 is isomorph-containing but not homomorph-containing | |FULL LIST, MORE INFO |

Subhomomorph-containing subgroup | contains any homomorphic image in the whole group of any subgroup of it | (via homomorph-containing) | (via homomorph-containing) | Homomorph-containing subgroup, Right-transitively isomorph-containing subgroup, Subisomorph-containing subgroup|FULL LIST, MORE INFO |

subisomorph-containing subgroup | contains any subgroup of the whole group isomorphic to any subgroup of itself | (obvious) | cyclic maximal subgroup of dihedral group:D8 is isomorph-containing but not subisomorph-containing | Right-transitively isomorph-containing subgroup|FULL LIST, MORE INFO |

variety-containing subgroup | contains any subgroup of the whole group in the subvariety of the variety of groups generated by it | (obvious) | (via either homomorph-containing or subisomorph-containing) | Homomorph-containing subgroup, Right-transitively isomorph-containing subgroup, Subisomorph-containing subgroup|FULL LIST, MORE INFO |

fully invariant direct factor | both a fully invariant subgroup and a direct factor | equivalence of definitions of fully invariant direct factor | Complemented homomorph-containing subgroup, Complemented isomorph-containing subgroup, Homomorph-containing subgroup|FULL LIST, MORE INFO |

### Weaker properties

## Metaproperties

### Transitivity

NO:This subgroup property isnottransitive: a subgroup with this property in a subgroup with this property, need not have the property in the whole groupABOUT THIS PROPERTY: View variations of this property that are transitive|View variations of this property that are not transitiveABOUT TRANSITIVITY: View a complete list of subgroup properties that are not transitive|View facts related to transitivity of subgroup properties | View a survey article on disproving transitivity

`For full proof, refer: Isomorph-containment is not transitive`

### Trimness

This subgroup property is trim -- it is both trivially true (true for the trivial subgroup) and identity-true (true for a group as a subgroup of itself).

View other trim subgroup properties | View other trivially true subgroup properties | View other identity-true subgroup properties

### Intermediate subgroup condition

YES:This subgroup property satisfies the intermediate subgroup condition: if a subgroup has the property in the whole group, it has the property in every intermediate subgroup.ABOUT THIS PROPERTY: View variations of this property satisfying intermediate subgroup condition | View variations of this property not satisfying intermediate subgroup conditionABOUT INTERMEDIATE SUBROUP CONDITION:View all properties satisfying intermediate subgroup condition | View facts about intermediate subgroup condition