Difference between revisions of "Homomorph-containing subgroup"

From Groupprops
Jump to: navigation, search
(Weaker properties)
(Examples)
(11 intermediate revisions by the same user not shown)
Line 4: Line 4:
 
==Definition==
 
==Definition==
  
A [[subgroup]] <math>H</math> of a [[group]] <math>G</math> is termed '''homomorph-containing''' if for any <math>\varphi \in \operatorname{Hom}(H,G)</math>, the image <math>\varphi(H)</math> is contained in <math>H</math>.
+
A [[subgroup]] <math>H</math> of a [[group]] <math>G</math> is termed '''homomorph-containing''' if for any <math>\varphi \in \operatorname{Hom}(H,G)</math> (i.e., any [[homomorphism of groups]] from <math>H</math> to <math>G</math>), the image <math>\varphi(H)</math> is contained in <math>H</math>.
  
==Relation with other properties==
+
==Examples==
 +
 
 +
===Extreme examples===
  
===Stronger properties===
+
* Every group is homomorph-containing as a subgroup of itself.
 +
* The trivial subgroup is homomorph-containing in any group.
  
* [[Weaker than::Order-containing subgroup]]
+
===Important classes of examples===
* [[Weaker than::Subhomomorph-containing subgroup]]
 
* [[Weaker than::Variety-containing subgroup]]
 
* [[Weaker than::Normal Sylow subgroup]]
 
* [[Weaker than::Normal Hall subgroup]]
 
  
===Weaker properties===
+
* [[Normal Sylow subgroup]]s and [[normal Hall subgroup]]s are homomorph-containing.
 +
* Subgroups defined as the subgroup generated by elements of specific orders, are all homomorph-containing subgroups. The [[omega subgroups of a group of prime power order]] are such examples. {{further|[[Omega subgroups are homomorph-containing]]}}
 +
* The [[perfect core]] of a group is a homomorph-containing subgroup.
  
* [[Stronger than::Fully characteristic subgroup]]: Also related:
+
See also the section [[#Stronger properties]] in this page.
** [[Stronger than::Intermediately fully characteristic subgroup]]
 
** [[Stronger than::Strictly characteristic subgroup]]
 
** [[Stronger than::Intermediately characteristic subgroup]]
 
** [[Stronger than::Characteristic subgroup]]
 
** [[Stronger than::Normal subgroup]]
 
* [[Stronger than::Isomorph-containing subgroup]]
 
* [[Stronger than::Homomorph-dominating subgroup]]
 
  
==Facts==
+
===Examples in small finite groups===
  
* The [[omega subgroups of a group of prime power order]] are homomorph-containing. {{further|[[Omega subgroups are homomorph-containing]]}}
+
{{subgroup property see examples embed|homomorph-containing subgroup}}
  
 
==Metaproperties==
 
==Metaproperties==
  
{{trim}}
+
{{wikilocal-section}}
  
{{intsubcondn}}
+
Here is a summary:
  
{{join-closed}}
+
{| class="sortable" border="1"
 +
!Metaproperty name !! Satisfied? !! Proof !! Statement with symbols
 +
|-
 +
| [[satisfies metaproperty::trim subgroup property]] || Yes || || For any group <math>G</math>, both <math>G</math> (as a subgroup of itself) and the trivial subgroup of <math>G</math> are homomorph-containing subgroups of <math>G</math>.
 +
|-
 +
| [[dissatisfies metaproperty::transitive subgroup property]] || No || [[homomorph-containment is not transitive]] || It is possible to have groups <math>H \le K \le G</math> such that <math>H</math> is homomorph-containing in <math>K</math> and <math>K</math> is homomorph-containing in <math>G</math> but <math>H</matH> is not homomorph-containing in <math>G</math>.
 +
|-
 +
| [[satisfies metaproperty::intermediate subgroup condition]] || Yes || [[homomorph-containment satisfies intermediate subgroup condition]] || If <math>H \le K \le G</math> and <math>H</math> is homomorph-containing in <math>G</math>, then <math>H</math> is homomorph-containing in <math>K</math>.
 +
|-
 +
| [[satisfies metaproperty::strongly join-closed subgroup property]] || Yes || [[homomorph-containment is strongly join-closed]] || If <math>H_i, i \in I</math> are a collection of homomorph-containing subgroups of <math>G</math>, the [[join of subgroups]] <math>\langle H_i \rangle_{i \in I}</math> is also a homomorph-containing subgroup.
 +
|-
 +
| [[satisfies metaproperty::quotient-transitive subgroup property]] || Yes || [[homomorph-containment is quotient-transitive]] || If <math>H \le K \le G</math> such that <math>H</math> is homomorph-containing in <math>G</math> and <math>K/H</math> is homomorph-containing in <matH>G/H</math>, then <math>K</math> is homomorph-containing in <math>G</math>.
 +
|}
 +
 
 +
==Relation with other properties==
 +
 
 +
===Stronger properties===
 +
 
 +
{| class="sortable" border="1"
 +
! Property !! Meaning !! Proof of implication !! Proof of strictness (reverse implication failure) !! Intermediate notions
 +
|-
 +
| [[Weaker than::order-containing subgroup]] || contains every subgroup whose order divides its order || [[order-containing implies homomorph-containing]] || [[homomorph-containing not implies order-containing]] || {{intermediate notions short|homomorph-containing subgroup|order-containing subgroup}}
 +
|-
 +
| [[Weaker than::subhomomorph-containing subgroup]] || contains every homomorphic image of every subgroup || [[subhomomorph-containing implies homomorph-containing]] || [[homomorph-containing not implies subhomomorph-containing]] || {{intermediate notions short|homomorph-containing subgroup|subhomomorph-containing subgroup}}
 +
|-
 +
| [[Weaker than::variety-containing subgroup]] || contains every subgroup of the whole group in the variety it generates || (via subhomomorph-containing) || (via subhomomorph-containing) || {{intermediate notions short|homomorph-containing subgroup|variety-containing subgroup}}
 +
|-
 +
| [[Weaker than::normal Sylow subgroup]] || normal and a [[Sylow subgroup]] || || || {{intermediate notions short|homomorph-containing subgroup|normal Sylow subgroup}}
 +
|-
 +
| [[Weaker than::normal Hall subgroup]] || normal and a [[Hall subgroup]] || || || {{intermediate notions short|homomorph-containing subgroup|normal Hall subgroup}}
 +
|-
 +
| [[Weaker than::fully invariant direct factor]] || [[fully invariant subgroup|fully invariant]] and a [[direct factor]] || [[equivalence of definitions of fully invariant direct factor]] || || {{intermediate notions short|homomorph-containing subgroup|fully invariant direct factor}}
 +
|-
 +
| [[Weaker than::left-transitively homomorph-containing subgroup]] || if whole group is homomorph-containing in some group, so is the subgroup || || [[homomorph-containment is not transitive]] || {{intermediate notions short|homomorph-containing subgroup|left-transitively homomorph-containing subgroup}}
 +
|-
 +
| [[Weaker than::right-transitively homomorph-containing subgroup]] || any homomorph-containing subgroup of it is homomorph-containing in the whole group || || || {{intermediate notions short|homomorph-containing subgroup|right-transitively homomorph-containing subgroup}}
 +
|-
 +
| [[Weaker than::normal subgroup having no nontrivial homomorphism to its quotient group]] || no nontrivial [[homomorphism]] to the [[quotient group]] || || || {{intermediate notions short|homomorph-containing subgroup|normal subgroup having no nontrivial homomorphism to its quotient group}}
 +
|}
 +
 
 +
===Weaker properties===
  
{{quot-transitive}}
+
{| class="sortable" border="1"
 +
! Property !! Meaning !! Proof of implication !! Proof of strictness (reverse implication failure) !! Intermediate notions
 +
|-
 +
| [[Stronger than::fully invariant subgroup]] || invariant under all [[endomorphism]]s || [[homomorph-containing implies fully invariant]] || [[fully invariant not implies homomorph-containing]] || {{intermediate notions short|fully invariant subgroup|homomorph-containing subgroup}}
 +
|-
 +
|[[Stronger than::intermediately fully invariant subgroup]] || fully invariant in every intermediate subgroup || || || {{intermediate notions short|intermediately fully invariant subgroup|homomorph-containing subgroup}}
 +
|-
 +
| [[Stronger than::strictly characteristic subgroup]] || invariant under all [[surjective endomorphism]]s || (via fully invariant) || (via fully invariant) || {{intermediate notions short|strictly characteristic subgroup|homomorph-containing subgroup}}
 +
|-
 +
| [[Stronger than::characteristic subgroup]] || invariant under all [[automorphism]]s || (via fully invariant) || (via fully invariant) || {{intermediate notions short|characteristic subgroup|homomorph-containing subgroup}}
 +
|-
 +
| [[Stronger than::intermediately characteristic subgroup]] || characteristic in every intermediate subgroup || (via intermediately fully invariant) || (via intermediately fully invariant) || {{intermediate notions short|intermediately characteristic subgroup|homomorph-containing subgroup}}
 +
|-
 +
| [[Stronger than::normal subgroup]] || invariant under all [[inner automorphism]]s, kernel of homomorphism || (via fully invariant) || (via fully invariant) || {{intermediate notions short|normal subgroup|homomorph-containing subgroup}}
 +
|-
 +
| [[Stronger than::isomorph-containing subgroup]] || contains all isomorphic subgroups || [[homomorph-containing implies isomorph-containing]] || [[isomorph-containing not implies homomorph-containing]] || {{intermediate notions short|isomorph-containing subgroup|homomorph-containing subgroup}}
 +
|-
 +
| [[Stronger than::homomorph-dominating subgroup]] || every homomorphic image is contained in some conjugate subgroup || || || {{intermediate notions short|homomorph-dominating subgroup|homomorph-containing subgroup}}
 +
|}

Revision as of 20:39, 8 July 2011

BEWARE! This term is nonstandard and is being used locally within the wiki. [SHOW MORE]
This article defines a subgroup property: a property that can be evaluated to true/false given a group and a subgroup thereof, invariant under subgroup equivalence. View a complete list of subgroup properties[SHOW MORE]

Definition

A subgroup H of a group G is termed homomorph-containing if for any \varphi \in \operatorname{Hom}(H,G) (i.e., any homomorphism of groups from H to G), the image \varphi(H) is contained in H.

Examples

Extreme examples

  • Every group is homomorph-containing as a subgroup of itself.
  • The trivial subgroup is homomorph-containing in any group.

Important classes of examples

See also the section #Stronger properties in this page.

Examples in small finite groups

Below are some examples of a proper nontrivial subgroup that satisfy the property homomorph-containing subgroup.

 Group partSubgroup partQuotient part
A3 in S3Symmetric group:S3Cyclic group:Z3Cyclic group:Z2
A4 in S4Symmetric group:S4Alternating group:A4Cyclic group:Z2
Center of nontrivial semidirect product of Z4 and Z4Nontrivial semidirect product of Z4 and Z4Klein four-groupKlein four-group
Center of quaternion groupQuaternion groupCyclic group:Z2Klein four-group
Center of special linear group:SL(2,3)Special linear group:SL(2,3)Cyclic group:Z2Alternating group:A4
Center of special linear group:SL(2,5)Special linear group:SL(2,5)Cyclic group:Z2Alternating group:A5
D8 in SD16Semidihedral group:SD16Dihedral group:D8Cyclic group:Z2
Direct product of Z4 and Z2 in M16M16Direct product of Z4 and Z2Cyclic group:Z2
First omega subgroup of direct product of Z4 and Z2Direct product of Z4 and Z2Klein four-groupCyclic group:Z2
Klein four-subgroup of alternating group:A4Alternating group:A4Klein four-groupCyclic group:Z3
SL(2,3) in GL(2,3)General linear group:GL(2,3)Special linear group:SL(2,3)Cyclic group:Z2

Below are some examples of a proper nontrivial subgroup that does not satisfy the property homomorph-containing subgroup.

 Group partSubgroup partQuotient part
Center of central product of D8 and Z4Central product of D8 and Z4Cyclic group:Z4Klein four-group
Center of dihedral group:D16Dihedral group:D16Cyclic group:Z2Dihedral group:D8
Center of dihedral group:D8Dihedral group:D8Cyclic group:Z2Klein four-group
Center of direct product of D8 and Z2Direct product of D8 and Z2Klein four-groupKlein four-group
Center of semidihedral group:SD16Semidihedral group:SD16Cyclic group:Z2Dihedral group:D8
Center of unitriangular matrix group:UT(3,p)Unitriangular matrix group:UT(3,p)Group of prime orderElementary abelian group of prime-square order
Central subgroup generated by a non-square in nontrivial semidirect product of Z4 and Z4Nontrivial semidirect product of Z4 and Z4Cyclic group:Z2Quaternion group
Cyclic maximal subgroup of dihedral group:D16Dihedral group:D16Cyclic group:Z8Cyclic group:Z2
Cyclic maximal subgroup of dihedral group:D8Dihedral group:D8Cyclic group:Z4Cyclic group:Z2
Cyclic maximal subgroup of semidihedral group:SD16Semidihedral group:SD16Cyclic group:Z8Cyclic group:Z2
Cyclic maximal subgroups of quaternion groupQuaternion groupCyclic group:Z4Cyclic group:Z2
D8 in D16Dihedral group:D16Dihedral group:D8Cyclic group:Z2
Derived subgroup of M16M16Cyclic group:Z2Direct product of Z4 and Z2
Derived subgroup of dihedral group:D16Dihedral group:D16Cyclic group:Z4Klein four-group
Derived subgroup of nontrivial semidirect product of Z4 and Z4Nontrivial semidirect product of Z4 and Z4Cyclic group:Z2Direct product of Z4 and Z2
Diagonally embedded Z4 in direct product of Z8 and Z2Direct product of Z8 and Z2Cyclic group:Z4Cyclic group:Z4
First agemo subgroup of direct product of Z4 and Z2Direct product of Z4 and Z2Cyclic group:Z2Klein four-group
Group of integers in group of rational numbersGroup of rational numbersGroup of integersGroup of rational numbers modulo integers
Klein four-subgroup of M16M16Klein four-groupCyclic group:Z4
Klein four-subgroups of dihedral group:D8Dihedral group:D8Klein four-groupCyclic group:Z2
Non-central Z4 in M16M16Cyclic group:Z4Cyclic group:Z4
Non-characteristic order two subgroups of direct product of Z4 and Z2Direct product of Z4 and Z2Cyclic group:Z2Cyclic group:Z4
Normal Klein four-subgroup of symmetric group:S4Symmetric group:S4Klein four-groupSymmetric group:S3
Q8 in SD16Semidihedral group:SD16Quaternion groupCyclic group:Z2
Q8 in central product of D8 and Z4Central product of D8 and Z4Quaternion groupCyclic group:Z2
S2 in S3Symmetric group:S3Cyclic group:Z2
Subgroup generated by a non-commutator square in nontrivial semidirect product of Z4 and Z4Nontrivial semidirect product of Z4 and Z4Cyclic group:Z2Dihedral group:D8
Z2 in V4Klein four-groupCyclic group:Z2Cyclic group:Z2
Z4 in direct product of Z4 and Z2Direct product of Z4 and Z2Cyclic group:Z4Cyclic group:Z2

Metaproperties

BEWARE! This section of the article uses terminology local to the wiki, possibly without giving a full explanation of the terminology used (though efforts have been made to clarify terminology as much as possible within the particular context)

Here is a summary:

Metaproperty name Satisfied? Proof Statement with symbols
trim subgroup property Yes For any group G, both G (as a subgroup of itself) and the trivial subgroup of G are homomorph-containing subgroups of G.
transitive subgroup property No homomorph-containment is not transitive It is possible to have groups H \le K \le G such that H is homomorph-containing in K and K is homomorph-containing in G but H is not homomorph-containing in G.
intermediate subgroup condition Yes homomorph-containment satisfies intermediate subgroup condition If H \le K \le G and H is homomorph-containing in G, then H is homomorph-containing in K.
strongly join-closed subgroup property Yes homomorph-containment is strongly join-closed If H_i, i \in I are a collection of homomorph-containing subgroups of G, the join of subgroups \langle H_i \rangle_{i \in I} is also a homomorph-containing subgroup.
quotient-transitive subgroup property Yes homomorph-containment is quotient-transitive If H \le K \le G such that H is homomorph-containing in G and K/H is homomorph-containing in G/H, then K is homomorph-containing in G.

Relation with other properties

Stronger properties

Property Meaning Proof of implication Proof of strictness (reverse implication failure) Intermediate notions
order-containing subgroup contains every subgroup whose order divides its order order-containing implies homomorph-containing homomorph-containing not implies order-containing Right-transitively homomorph-containing subgroup, Subhomomorph-containing subgroup|FULL LIST, MORE INFO
subhomomorph-containing subgroup contains every homomorphic image of every subgroup subhomomorph-containing implies homomorph-containing homomorph-containing not implies subhomomorph-containing Right-transitively homomorph-containing subgroup|FULL LIST, MORE INFO
variety-containing subgroup contains every subgroup of the whole group in the variety it generates (via subhomomorph-containing) (via subhomomorph-containing) Right-transitively homomorph-containing subgroup, Subhomomorph-containing subgroup|FULL LIST, MORE INFO
normal Sylow subgroup normal and a Sylow subgroup Complemented homomorph-containing subgroup, Normal Hall subgroup, Normal subgroup having no nontrivial homomorphism to its quotient group, Order-containing subgroup, Variety-containing subgroup|FULL LIST, MORE INFO
normal Hall subgroup normal and a Hall subgroup Complemented homomorph-containing subgroup, Normal subgroup having no nontrivial homomorphism to its quotient group, Order-containing subgroup, Variety-containing subgroup|FULL LIST, MORE INFO
fully invariant direct factor fully invariant and a direct factor equivalence of definitions of fully invariant direct factor Complemented homomorph-containing subgroup, Left-transitively homomorph-containing subgroup, Normal subgroup having no nontrivial homomorphism to its quotient group|FULL LIST, MORE INFO
left-transitively homomorph-containing subgroup if whole group is homomorph-containing in some group, so is the subgroup homomorph-containment is not transitive |FULL LIST, MORE INFO
right-transitively homomorph-containing subgroup any homomorph-containing subgroup of it is homomorph-containing in the whole group |FULL LIST, MORE INFO
normal subgroup having no nontrivial homomorphism to its quotient group no nontrivial homomorphism to the quotient group |FULL LIST, MORE INFO

Weaker properties

Property Meaning Proof of implication Proof of strictness (reverse implication failure) Intermediate notions
fully invariant subgroup invariant under all endomorphisms homomorph-containing implies fully invariant fully invariant not implies homomorph-containing Intermediately fully invariant subgroup, Sub-homomorph-containing subgroup|FULL LIST, MORE INFO
intermediately fully invariant subgroup fully invariant in every intermediate subgroup |FULL LIST, MORE INFO
strictly characteristic subgroup invariant under all surjective endomorphisms (via fully invariant) (via fully invariant) Fully invariant subgroup, Intermediately strictly characteristic subgroup, Normal-homomorph-containing subgroup, Sub-homomorph-containing subgroup|FULL LIST, MORE INFO
characteristic subgroup invariant under all automorphisms (via fully invariant) (via fully invariant) Fully invariant subgroup, Intermediately fully invariant subgroup, Intermediately injective endomorphism-invariant subgroup, Intermediately strictly characteristic subgroup, Isomorph-containing subgroup, Normal-homomorph-containing subgroup, Sub-homomorph-containing subgroup|FULL LIST, MORE INFO
intermediately characteristic subgroup characteristic in every intermediate subgroup (via intermediately fully invariant) (via intermediately fully invariant) Intermediately fully invariant subgroup, Intermediately injective endomorphism-invariant subgroup, Intermediately strictly characteristic subgroup, Isomorph-containing subgroup|FULL LIST, MORE INFO
normal subgroup invariant under all inner automorphisms, kernel of homomorphism (via fully invariant) (via fully invariant) Characteristic subgroup, Fully invariant subgroup, Isomorph-containing subgroup, Normal-homomorph-containing subgroup, Sub-homomorph-containing subgroup|FULL LIST, MORE INFO
isomorph-containing subgroup contains all isomorphic subgroups homomorph-containing implies isomorph-containing isomorph-containing not implies homomorph-containing |FULL LIST, MORE INFO
homomorph-dominating subgroup every homomorphic image is contained in some conjugate subgroup |FULL LIST, MORE INFO