# Difference between revisions of "Finite-extensible implies class-preserving"

Jump to: navigation, search

This article gives the statement and possibly, proof, of an implication relation between two automorphism properties. That is, it states that every automorphism satisfying the first automorphism property (i.e., finite-extensible automorphism) must also satisfy the second automorphism property (i.e., class-preserving automorphism)
View all automorphism property implications | View all automorphism property non-implications
Get more facts about finite-extensible automorphism|Get more facts about class-preserving automorphism
This fact is related to: Extensible automorphisms problem
View other facts related to Extensible automorphisms problemView terms related to Extensible automorphisms problem |

## Related facts

### Other results towards the associated conjecture/problem

This fact is part of an attempt to prove the finite-extensible automorphisms conjecture, which states that every finite-extensible automorphism of a finite group must be an inner automorphism. The finite-extensible automorphisms conjecture is closely related to the extensible automorphisms conjecture, which makes a similar statement about extensible automorphisms of (possibly infinite) groups. Some related results:

## Proof

Facts (1) and (2) combine to yield that any finite-extensible automorphism is linearly pushforwardable over a prime field where the prime does not divide the order of the group, and fact (3) yields that if the field chosen is a class-separating field for the group, then the automorphism is class-preserving. Thus, we need to show that for every finite group, there exists a prime field with the prime not dividing the order of the group, such that the field is a class-separating field for the group. This is achieved by facts (4) and (5).