Difference between revisions of "Element structure of special linear group:SL(2,R)"

From Groupprops
Jump to: navigation, search
(Conjugacy class structure)
(added conjugacy class names: elliptic, parabolic, hyperbolic)
 
Line 25: Line 25:
 
| Diagonalizable over <math>\R</math> with equal diagonal entries, hence a scalar || <math>\{ 1,1 \}</math> or <math>\{ -1,-1\}</math> || <math>(x - a)^2</math> where <math>a \in \{ -1,1 \}</math> || <math>x - a</math> where <math>a \in \{ -1,1\}</math> || one-point set || two-point set || two-point set || Yes || Yes || No
 
| Diagonalizable over <math>\R</math> with equal diagonal entries, hence a scalar || <math>\{ 1,1 \}</math> or <math>\{ -1,-1\}</math> || <math>(x - a)^2</math> where <math>a \in \{ -1,1 \}</math> || <math>x - a</math> where <math>a \in \{ -1,1\}</math> || one-point set || two-point set || two-point set || Yes || Yes || No
 
|-
 
|-
| Not diagonal, has Jordan block of size two  || <math>1</math> (multiplicity 2) or <math>-1</math> (multiplicity 2) || <math>(x - a)^2</math> where <math>a \in \{ -1,1 \}</math> || Same as characteristic polynomial || ? || four-point set, two for eigenvalue 1, two for eigenvalue -1 || ? || No || No || Both the <matH>GL_2</math>-conjugacy classes split into two pieces.
+
| '''Parabolic conjugacy class''': Not diagonal, has Jordan block of size two  || <math>1</math> (multiplicity 2) or <math>-1</math> (multiplicity 2) || <math>(x - a)^2</math> where <math>a \in \{ -1,1 \}</math> || Same as characteristic polynomial || ? || four-point set, two for eigenvalue 1, two for eigenvalue -1 || ? || No || No || Both the <matH>GL_2</math>-conjugacy classes split into two pieces.
 
|-
 
|-
| Diagonalizable over <math>\mathbb{C}</math> but not over <math>\R</math>. Must necessarily have no repeated eigenvalues. || Pair of conjugate elements in <math>\mathbb{C}</math> of modulus 1 || <math>x^2 - ax + 1</math>, <math>-2 \le a \le 2</math> || Same as characteristic polynomial || ? || direct product of the open interval <math>(-2,2)</math> with a two-point set || ? || Yes || No || each <matH>GL_2</matH>-conjugacy class splits into two <matH>SL_2</matH>-conjugacy classes.
+
| '''Elliptic conjugacy class''': Diagonalizable over <math>\mathbb{C}</math> but not over <math>\R</math>. Must necessarily have no repeated eigenvalues. || Pair of conjugate elements in <math>\mathbb{C}</math> of modulus 1 || <math>x^2 - ax + 1</math>, <math>-2 \le a \le 2</math> || Same as characteristic polynomial || ? || direct product of the open interval <math>(-2,2)</math> with a two-point set || ? || Yes || No || each <matH>GL_2</matH>-conjugacy class splits into two <matH>SL_2</matH>-conjugacy classes.
 
|-
 
|-
 
|-
 
|-
| Diagonalizable over <math>K</math> with ''distinct'' (and hence mutually inverse) diagonal entries || <math>\lambda, 1/\lambda</math> where <math>\lambda \in \R \setminus \{ 0,1,-1  \}</math> || <math>x^2 - (\lambda + 1/\lambda)x + 1</math> || Same as characteristic polynomial  || ? || <math>\R \setminus [-2,2]</math> || ? || Yes || Yes || No
+
| '''Hyperbolic conjugacy class''': Diagonalizable over <math>K</math> with ''distinct'' (and hence mutually inverse) diagonal entries || <math>\lambda, 1/\lambda</math> where <math>\lambda \in \R \setminus \{ 0,1,-1  \}</math> || <math>x^2 - (\lambda + 1/\lambda)x + 1</math> || Same as characteristic polynomial  || ? || <math>\R \setminus [-2,2]</math> || ? || Yes || Yes || No
 
|-
 
|-
 
| Total || NA || NA || NA || NA || ? || ? || ? || ? || ?
 
| Total || NA || NA || NA || NA || ? || ? || ? || ? || ?
 
|}
 
|}
 
<section end="summary"/>
 
<section end="summary"/>

Latest revision as of 17:17, 7 September 2012

This article gives specific information, namely, element structure, about a particular group, namely: special linear group:SL(2,R).
View element structure of particular groups | View other specific information about special linear group:SL(2,R)

This article aims to discuss the element structure of special linear group:SL(2,R).

Related information

Conjugacy class structure

To deduce this from element structure of special linear group of degree two over a field, we need to use the following facts, about \R, the field of real numbers:

  • The group \R^*/(\R^*)^2 is cyclic of order two, with representatives 1, -1 .
  • The only separable quadratic extension of \R is the field of complex numbers, obtained by adjoining a square root of -1.
  • Further, the algebraic norm of any nonzero complex number is a positive real number, and in particular, it is a square. Thus, \R^*/N(\mathbb{C}^*) has size two.


Nature of conjugacy class Eigenvalues Characteristic polynomial Minimal polynomial What set can each conjugacy class be identified with? (rough measure of size of conjugacy class) What can the set of conjuacy classes be identified with (rough measure of number of conjugacy classes) What can the union of conjugacy classes be identified with? Semisimple? Diagonalizable over \R? Splits in SL_2 relative to GL_2?
Diagonalizable over \R with equal diagonal entries, hence a scalar \{ 1,1 \} or \{ -1,-1\} (x - a)^2 where a \in \{ -1,1 \} x - a where a \in \{ -1,1\} one-point set two-point set two-point set Yes Yes No
Parabolic conjugacy class: Not diagonal, has Jordan block of size two 1 (multiplicity 2) or -1 (multiplicity 2) (x - a)^2 where a \in \{ -1,1 \} Same as characteristic polynomial  ? four-point set, two for eigenvalue 1, two for eigenvalue -1  ? No No Both the GL_2-conjugacy classes split into two pieces.
Elliptic conjugacy class: Diagonalizable over \mathbb{C} but not over \R. Must necessarily have no repeated eigenvalues. Pair of conjugate elements in \mathbb{C} of modulus 1 x^2 - ax + 1, -2 \le a \le 2 Same as characteristic polynomial  ? direct product of the open interval (-2,2) with a two-point set  ? Yes No each GL_2-conjugacy class splits into two SL_2-conjugacy classes.
Hyperbolic conjugacy class: Diagonalizable over K with distinct (and hence mutually inverse) diagonal entries \lambda, 1/\lambda where \lambda \in \R \setminus \{ 0,1,-1  \} x^2 - (\lambda + 1/\lambda)x + 1 Same as characteristic polynomial  ? \R \setminus [-2,2]  ? Yes Yes No
Total NA NA NA NA  ?  ?  ?  ?  ?