# Element structure of dihedral group:D8

This article gives specific information, namely, element structure, about a particular group, namely: dihedral group:D8.

View element structure of particular groups | View other specific information about dihedral group:D8

We denote the identity element by .

## Contents

## Conjugacy class structure

FACTS TO CHECK AGAINST FOR CONJUGACY CLASS SIZES AND STRUCTURE:Divisibility facts: size of conjugacy class divides order of group | size of conjugacy class divides index of center | size of conjugacy class equals index of centralizerBounding facts: size of conjugacy class is bounded by order of derived subgroupCounting facts: number of conjugacy classes equals number of irreducible representations | class equation of a group

Conjugacy class | Size of conjugacy class | Order of elements in conjugacy class | Centralizer of first element of class |
---|---|---|---|

1 | 1 | whole group | |

1 | 2 | whole group | |

2 | 2 | -- one of the Klein four-subgroups of dihedral group:D8 | |

2 | 2 | -- one of the Klein four-subgroups of dihedral group:D8 | |

2 | 4 | -- the cyclic maximal subgroup of dihedral group:D8 |

The equivalence classes up to automorphisms are:

Equivalence class under automorphisms | Size of equivalence class | Number of conjugacy classes in it | Size of each conjugacy class |
---|---|---|---|

1 | 1 | 1 | |

1 | 1 | 1 | |

4 | 2 | 2 | |

2 | 1 | 2 |

### Convolution algebra on conjugacy classes

## Order and power information

### Directed power graph

Below is a trimmed version of the directed power graph of the group. There is an arrow from one vertex to another if the latter is the square of the former. We do not draw a loop at the identity element.

### Order statistics

Number | Elements of order exactly that number | Number of such elements | Number of conjugacy classes of such elements | Number of elements whose order divides that number | Number of conjugacy classes whose element order divides that number |
---|---|---|---|---|---|

1 | 1 | 1 | 1 | 1 | |

2 | 5 | 3 | 6 | 4 | |

4 | 2 | 1 | 8 | 5 |

### Power statistics

Number | powers that are not powers for any larger divisor of the group order | Number of such elements | Number of conjugacy classes of such elements | Number of powers | Number of conjugacy classes of powers |
---|---|---|---|---|---|

1 | 6 | 3 | 8 | 5 | |

2 | 1 | 1 | 2 | 2 | |

4 | -- | 0 | 0 | 1 | 1 |

8 | 1 | 1 | 1 | 1 |