Direct factor is not finite-join-closed
From Groupprops
This article gives the statement, and possibly proof, of a subgroup property (i.e., direct factor) not satisfying a subgroup metaproperty (i.e., finite-join-closed subgroup property).This also implies that it does not satisfy the subgroup metaproperty/metaproperties: Join-closed subgroup property (?), .
View all subgroup metaproperty dissatisfactions | View all subgroup metaproperty satisfactions|Get help on looking up metaproperty (dis)satisfactions for subgroup properties
Get more facts about direct factor|Get more facts about finite-join-closed subgroup propertyGet more facts about join-closed subgroup property|
Statement
A join of finitely many direct factors of a group need not be a direct factor. More specifically, it is possible to have a group and two subgroups
of
such that both
and
are direct factors and the join
is not a direct factor.
Related facts
Proof
An abelian group example
Suppose denotes the cyclic group of order
. Define:
.
Consider the following subgroups:
.
Then, both and
are direct factors of
, with a common direct factor complement
. On the other hand, we have:
.
This is not a direct factor of , because if a complement exists, it must have order two, but all elements of
outside
have order four.