Dihedral group

From Groupprops
Revision as of 18:32, 22 August 2008 by Vipul (talk | contribs)
Jump to: navigation, search
WARNING: POTENTIAL TERMINOLOGICAL CONFUSION: Please don't confuse this with dicyclic group (also called binary dihedral group)
This article defines a group property: a property that can be evaluated to true/false for any given group, invariant under isomorphism
View a complete list of group properties
VIEW RELATED: Group property implications | Group property non-implications |Group metaproperty satisfactions | Group metaproperty dissatisfactions | Group property satisfactions | Group property dissatisfactions

This is a family of groups parametrized by the natural numbers, viz, for each natural number, there is a unique group (upto isomorphism) in the family corresponding to the natural number. The natural number is termed the parameter for the group family

This article is about a general term. A list of important particular cases (instances) is available at Category:Dihedral groups

Definition

The dihedral group with parameter n, denoted sometimes as D_n and sometimes as D_{2n} is defined in the following equivalent ways:

\langle x,a|a^n = x^2 = e, xax^{-1} = a^{-1} \rangle

  • It is the group of symmetries of a regular n-gon in the plane, viz the plane isometries that preserves the set of points of the regular n-gon.

The dihedral groups arise as a special case of a family of groups called von Dyck groups.

References

Textbook references

  • Abstract Algebra by David S. Dummit and Richard M. Foote, 10-digit ISBN 0471433349, 13-digit ISBN 978-0471433347More info, Page 23-27, Section 1.2 Dihedral Groups (the entire section discusses dihedral groups from a number of perspectives)
  • Groups and representations by Jonathan Lazare Alperin and Rowen B. Bell, ISBN 0387945261, More info, Page 24 (definition introduced in paragraph)
  • Algebra by Serge Lang, ISBN 038795385X, More info, Page 78, Exercise 34 (a) (definition introduced in exercise)
  • Topics in Algebra by I. N. Herstein, More info, Page 54, Problem 17
  • A Course in the Theory of Groups by Derek J. S. Robinson, ISBN 0387944613, More info, Page 6 (definition introduced informally, in paragraph, using the geometric perspective)
  • An Introduction to Abstract Algebra by Derek J. S. Robinson, ISBN 3110175444, More info, Page 42, under The symmetry group of the regular n-gon
  • Algebra (Graduate Texts in Mathematics) by Thomas W. Hungerford, ISBN 0387905189, More info, Page 50 (definition introduced as a subgroup of the symmetric group)