Difference between revisions of "Characteristicity is transitive"
Line 14: | Line 14: | ||
A [[characteristic subgroup]] of a [[characteristic subgroup]] is characteristic in the whole group. | A [[characteristic subgroup]] of a [[characteristic subgroup]] is characteristic in the whole group. | ||
− | === | + | ===Statement with symbols=== |
Let <math>H</math> be a [[characteristic subgroup]] of <math>K</math>, and <math>K</math> a characteristic subgroup of <math>G</math>. Then, <math>H</math> is a characteristic subgroup of <math>G</math>. | Let <math>H</math> be a [[characteristic subgroup]] of <math>K</math>, and <math>K</math> a characteristic subgroup of <math>G</math>. Then, <math>H</math> is a characteristic subgroup of <math>G</math>. | ||
Line 36: | Line 36: | ||
* [[Characteristicity is transitive in Lie rings]] | * [[Characteristicity is transitive in Lie rings]] | ||
+ | * [[Characteristicity is transitive in any variety of algebras]] | ||
* [[Derivation-invariance is transitive]]: For some purposes, the property of being a [[derivation-invariant Lie subring]] is the Lie analogue of the property of being a characteristic subgroup. | * [[Derivation-invariance is transitive]]: For some purposes, the property of being a [[derivation-invariant Lie subring]] is the Lie analogue of the property of being a characteristic subgroup. | ||
Line 41: | Line 42: | ||
* [[Automorph-conjugacy is transitive]] | * [[Automorph-conjugacy is transitive]] | ||
+ | |||
+ | ==Definitions used== | ||
+ | |||
+ | ===Characteristic subgroup=== | ||
+ | |||
+ | {{further|[[Characteristic subgroup]]}} | ||
+ | |||
+ | A subgroup <math>H</math> of a group <math>G</math> is termed a characteristic subgroup if whenever <math>\sigma</math> is an automorphism of <math>G</math>, <math>\sigma</math> restricts to an automorphism of <math>H</math>. | ||
+ | |||
+ | This is written using the [[function restriction expression]]: | ||
+ | |||
+ | Automorphism <math>\to</math> Automorphism | ||
+ | |||
+ | In other words, every automorphism of the whole group restricts to an automorphism of the subgroup. | ||
+ | |||
+ | ===Transitive subgroup property== | ||
+ | |||
+ | {{further|[[Transitive subgroup property]]}} | ||
+ | |||
+ | A subgroup property <math>p</math> is termed transitive if whenever <math>H \le K \le G</math> are groups such that <math>H</math> satisfies property <math>p</math> in <math>K</math> and <math>K</math> satisfies property <math>p</math> in <math>G</math>, <math>H</math> also satisfies property <math>p</math> in <math>G</math>. | ||
==Proof== | ==Proof== | ||
− | {{ | + | |
+ | ===Hands-on proof=== | ||
+ | |||
+ | '''Given''': A group <math>G</math> with a characteristic subgroup <math>K</math>. <math>H</math> is a characteristic subgroup of <math>G</math>. | ||
+ | |||
+ | '''To prove''': <math>H</math> is a characteristic subgroup of <math>G</math>: for any automorphism <math>\sigma</math> of <math>G</math>, <math>\sigma</math> restricts to an automorphism of <math>H</math>. | ||
+ | |||
+ | '''Proof''': | ||
+ | |||
+ | # <math>\sigma(K) = K</math>, and <math>\sigma</math> restricts to an automorphism of <math>K</math>: This follows from the fact that <math>K</math> is characteristic in <math>G</math>. | ||
+ | # Let <math>\sigma'</math> be the restriction of <math>\sigma</math> to <math>K</math>. Then, <math>\sigma'</math> is an automorphism of <math>K</math> by step (1). | ||
+ | # <math>\sigma'(H) = H</math>, and <math>\sigma'</math> restricts to an automorphism of <math>H</math>: This follows from the fact that <math>H</math> is characteristic in <math>K</math>. | ||
+ | # Thus, <math>\sigma(H) = H</math>. | ||
+ | |||
+ | {{frexp metaproperty satisfaction}} | ||
+ | |||
+ | {{proof generalizes|[[balanced implies transitive]]}} | ||
+ | |||
+ | The idea behind this proof is to observe that characteristicity can be written as the balanced subgroup property: | ||
+ | |||
+ | Automorphism <math>\to</math> Automorphism | ||
+ | |||
+ | In other words, every automorphism of the big group restricts to an automorphism of the subgroup. Any balanced subgroup property is transitive, and this gives the proof. | ||
==References== | ==References== |
Revision as of 20:22, 20 October 2008
DIRECT: The fact or result stated in this article has a trivial/direct/straightforward proof provided we use the correct definitions of the terms involved
View other results with direct proofs
VIEW FACTS USING THIS: directly | directly or indirectly, upto two steps | directly or indirectly, upto three steps|
VIEW: Survey articles about this
This article gives the statement, and possibly proof, of a subgroup property (i.e., characteristic subgroup) satisfying a subgroup metaproperty (i.e., transitive subgroup property)
View all subgroup metaproperty satisfactions | View all subgroup metaproperty dissatisfactions |Get help on looking up metaproperty (dis)satisfactions for subgroup properties
Get more facts about characteristic subgroup |Get facts that use property satisfaction of characteristic subgroup | Get facts that use property satisfaction of characteristic subgroup|Get more facts about transitive subgroup property
Statement
Property-theoretic statement
The subgroup property of being characteristic satisfies the subgroup metaproperty of being transitive.
Verbal statement
A characteristic subgroup of a characteristic subgroup is characteristic in the whole group.
Statement with symbols
Let be a characteristic subgroup of , and a characteristic subgroup of . Then, is a characteristic subgroup of .
Related facts
Close relation with normality
- Normality is not transitive: A normal subgroup of a normal subgroup need not be normal.
- Characteristic of normal implies normal
- Left transiter of normal is characteristic: If is a subgroup such that whenever is normal in , so is , then is characteristic in .
Generalizations
Balanced implies transitive: Any subgroup property that can be expressed as a balanced subgroup property is transitive. Characteristicity is a special case. Other special cases include:
Analogues in other structures
- Characteristicity is transitive in Lie rings
- Characteristicity is transitive in any variety of algebras
- Derivation-invariance is transitive: For some purposes, the property of being a derivation-invariant Lie subring is the Lie analogue of the property of being a characteristic subgroup.
Definitions used
Characteristic subgroup
Further information: Characteristic subgroup
A subgroup of a group is termed a characteristic subgroup if whenever is an automorphism of , restricts to an automorphism of .
This is written using the function restriction expression:
Automorphism Automorphism
In other words, every automorphism of the whole group restricts to an automorphism of the subgroup.
=Transitive subgroup property
Further information: Transitive subgroup property
A subgroup property is termed transitive if whenever are groups such that satisfies property in and satisfies property in , also satisfies property in .
Proof
Hands-on proof
Given: A group with a characteristic subgroup . is a characteristic subgroup of .
To prove: is a characteristic subgroup of : for any automorphism of , restricts to an automorphism of .
Proof:
- , and restricts to an automorphism of : This follows from the fact that is characteristic in .
- Let be the restriction of to . Then, is an automorphism of by step (1).
- , and restricts to an automorphism of : This follows from the fact that is characteristic in .
- Thus, .
Function restriction expression metaproperty satisfaction
This proof of a subgroup property satisfying a subgroup metaproperty relies on the nature of a function restriction expression for the subgroup property.
This proof method generalizes to the following results: balanced implies transitive
The idea behind this proof is to observe that characteristicity can be written as the balanced subgroup property:
Automorphism Automorphism
In other words, every automorphism of the big group restricts to an automorphism of the subgroup. Any balanced subgroup property is transitive, and this gives the proof.
References
Textbook references
- Abstract Algebra by David S. Dummit and Richard M. Foote, 10-digit ISBN 0471433349, 13-digit ISBN 978-0471433347, ^{More info}, Page 135, Page 137 (Problem 8(b))
- Groups and representations by Jonathan Lazare Alperin and Rowen B. Bell, ISBN 0387945261, ^{More info}, Page 17, Lemma 4
- A Course in the Theory of Groups by Derek J. S. Robinson, ISBN 0387944613, ^{More info}, Page 28, Characteristic and Fully invariant subgroups, 1.5.6(ii)
- Nilpotent groups and their automorphisms by Evgenii I. Khukhro, ISBN 3110136724, ^{More info}, Page 4, Section 1.1 (passing mention)