2-Sylow subgroup of special linear group:SL(2,5)
From Groupprops
This article is about a particular subgroup in a group, up to equivalence of subgroups (i.e., an isomorphism of groups that induces the corresponding isomorphism of subgroups). The subgroup is (up to isomorphism) quaternion group and the group is (up to isomorphism) special linear group:SL(2,5) (see subgroup structure of special linear group:SL(2,5)).
VIEW: Group-subgroup pairs with the same subgroup part | Group-subgroup pairs with the same group part | All pages on particular subgroups in groups
is the special linear group:SL(2,5), i.e., the special linear group of degree two over field:F5. In other words, it is the group of invertible
matrices of determinant 1 over the field with three elements. The field has elements 0,1,2,3,4 with
.
is the subgroup:
is isomorphic to the quaternion group of order 8.
Arithmetic functions
Function | Value | Explanation |
---|---|---|
order of the whole group | 120 | Order of ![]() ![]() ![]() |
order of the subgroup | 8 | |
index of the subgroup | 15 | |
size of conjugacy class = index of normalizer | 5 | |
number of conjugacy classes in automorphism class | 1 |