One-headed group
This article defines a group property: a property that can be evaluated to true/false for any given group, invariant under isomorphism
View a complete list of group properties
VIEW RELATED: Group property implications | Group property non-implications |Group metaproperty satisfactions | Group metaproperty dissatisfactions | Group property satisfactions | Group property dissatisfactions
This is a variation of simplicity|Find other variations of simplicity | Read a survey article on varying simplicity
Definition
Symbol-free definition
A group is said to be one-headed if it has a unique maximal normal subgroup. Such a maximal normal subgorup is termed the head of the group.