Holomorph of a ring

From Groupprops
Revision as of 23:43, 7 May 2008 by Vipul (talk | contribs) (2 revisions)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Definition

Symbol-free definition

The holomorph of a ring is a group obtained as a semidirect product of its additive group by its multiplicative group of units, where the group of units acts by left multiplication (since the rings we consider for holomorph are usually commutative, we can omit the left qualifier).

Note that for a cyclic group, the holomorph of the ring is the same as the holomorph of the underlying additive group (because every automorphism of the additive group can be expressed as a multiplication).

Definition with symbols

PLACEHOLDER FOR INFORMATION TO BE FILLED IN: [SHOW MORE]

Group properties