Group of finite composition length
This article defines a group property: a property that can be evaluated to true/false for any given group, invariant under isomorphism
View a complete list of group properties
VIEW RELATED: Group property implications | Group property non-implications |Group metaproperty satisfactions | Group metaproperty dissatisfactions | Group property satisfactions | Group property dissatisfactions
This is a variation of finiteness (groups)|Find other variations of finiteness (groups) |
This property makes sense for infinite groups. For finite groups, it is always true
Definition
A group is said to have finite composition length if it possesses a composition series of finite length, viz., a subnormal series suchthat all the successive quotients are finite groups.