Ambivalence is quotient-closed
This article gives the statement, and possibly proof, of a group property (i.e., ambivalent group) satisfying a group metaproperty (i.e., quotient-closed group property)
View all group metaproperty satisfactions | View all group metaproperty dissatisfactions |Get help on looking up metaproperty (dis)satisfactions for group properties
Get more facts about ambivalent group |Get facts that use property satisfaction of ambivalent group | Get facts that use property satisfaction of ambivalent group|Get more facts about quotient-closed group property
Statement
Statement with symbols
If is an ambivalent group, and is a normal subgroup of , the quotient group is also an ambivalent group.