Generalized quaternion group: Difference between revisions
m (3 revisions) |
No edit summary |
||
| Line 8: | Line 8: | ||
For the particular case <math>k=2</math>, we recover the [[quaternion group]]. | For the particular case <math>k=2</math>, we recover the [[quaternion group]]. | ||
===Small values=== | |||
{| class="sortable" border="1" | |||
!<math>k</math> !! Group !! Order, <math>2^{k+1}</math> | |||
|- | |||
| 2 || [[quaternion group]] || 8 | |||
|- | |||
| 3 || [[generalized quaternion group:Q16]] || 16 | |||
|- | |||
| 4 || [[generalized quaternion group:Q32]] || 32 | |||
|- | |||
| 5 || [[generalized quaternion group:Q64]] || 64 | |||
|- | |||
| 6 || [[generalized quaternion group:Q128]] || 128 | |||
|- | |||
| 7 || [[generalized quaternion group:Q256]] || 256 | |||
|- | |||
| 8 || [[generalized quaternion group:Q512]] || 512 | |||
|- | |||
| 9 || [[generalized quaternion group:Q1024]] || 1024 | |||
|- | |||
| 10 || [[generalized quaternion group:Q2048]] || 2048 | |||
|} | |||
Revision as of 15:39, 15 December 2023
Definition
A generalized quaternion group is a group of order with generators and such that the group has the presentation:
Equivalently, it is the dicyclic group with parameter .
For the particular case , we recover the quaternion group.
Small values
| Group | Order, | |
|---|---|---|
| 2 | quaternion group | 8 |
| 3 | generalized quaternion group:Q16 | 16 |
| 4 | generalized quaternion group:Q32 | 32 |
| 5 | generalized quaternion group:Q64 | 64 |
| 6 | generalized quaternion group:Q128 | 128 |
| 7 | generalized quaternion group:Q256 | 256 |
| 8 | generalized quaternion group:Q512 | 512 |
| 9 | generalized quaternion group:Q1024 | 1024 |
| 10 | generalized quaternion group:Q2048 | 2048 |