Generalized quaternion group: Difference between revisions

From Groupprops
m (3 revisions)
No edit summary
Line 8: Line 8:


For the particular case <math>k=2</math>, we recover the [[quaternion group]].
For the particular case <math>k=2</math>, we recover the [[quaternion group]].
===Small values===
{| class="sortable" border="1"
!<math>k</math> !! Group !! Order, <math>2^{k+1}</math>
|-
| 2 || [[quaternion group]] || 8
|-
| 3 || [[generalized quaternion group:Q16]] || 16
|-
| 4 || [[generalized quaternion group:Q32]] || 32
|-
| 5 || [[generalized quaternion group:Q64]] || 64
|-
| 6 || [[generalized quaternion group:Q128]] || 128
|-
| 7 || [[generalized quaternion group:Q256]] || 256
|-
| 8 || [[generalized quaternion group:Q512]] || 512
|-
| 9 || [[generalized quaternion group:Q1024]] || 1024
|-
| 10 || [[generalized quaternion group:Q2048]] || 2048
|}

Revision as of 15:39, 15 December 2023

Definition

A generalized quaternion group is a group of order 2k+1 with generators x and a such that the group has the presentation:

<a,x|x2=a2k1,a2k=1,xax1=a1>

Equivalently, it is the dicyclic group with parameter 2k1.

For the particular case k=2, we recover the quaternion group.

Small values

k Group Order, 2k+1
2 quaternion group 8
3 generalized quaternion group:Q16 16
4 generalized quaternion group:Q32 32
5 generalized quaternion group:Q64 64
6 generalized quaternion group:Q128 128
7 generalized quaternion group:Q256 256
8 generalized quaternion group:Q512 512
9 generalized quaternion group:Q1024 1024
10 generalized quaternion group:Q2048 2048