User:CJKG/Eigenbox: Difference between revisions

From Groupprops
No edit summary
No edit summary
Line 1: Line 1:
a) <math>\mathcal{M}</math> is termed '''right-equiponent magma''' or '''R-equiponent magma''' if and only if  
'''(1 a)''' <math>\mathcal{M}</math> is termed '''right-equiponent magma''' or '''R-equiponent magma''' if and only if  
<math>\exists M, \circ</math> with <math>((M; \circ) = \mathcal{M} \; \wedge \; \circ: M \times M \to M)</math> such that
<math>\exists M, \circ</math> with <math>((M; \circ) = \mathcal{M} \; \wedge \; \circ: M \times M \to M)</math> such that


<math>\forall a \in M \, \exists b \in M \, \forall c \in M \; (c \circ a) \circ c = b</math> (''right-equiponency law'').
: <math>\forall a, b \in M \; (b \circ a) \circ b = (a \circ a) \circ a</math> (''right-equiponency law'').


b) <math>\mathcal{M}</math> is termed '''left-equiponent magma''' or '''L-equiponent magma''' if and only if  
Equivalent
 
'''(1 b)''' <math>\exists M, \circ</math> with <math>((M; \circ) = \mathcal{M} \; \wedge \; \circ: M \times M \to M)</math> such that
 
: <math>\forall a, b, c \in M \; (a \circ c) \circ a = (b \circ c) \circ b</math>
 
Equivalent
 
'''(1 c)''' <math>\exists M, \circ</math> with <math>((M; \circ) = \mathcal{M} \; \wedge \; \circ: M \times M \to M)</math> such that
 
: <math>\forall a \in M \, \exists b \in M \, \forall c \in M \; (c \circ a) \circ c = b</math>
 
 
'''(2 a)''' <math>\mathcal{M}</math> is termed '''left-equiponent magma''' or '''L-equiponent magma''' if and only if  
<math>\exists M, \circ</math> with <math>((M; \circ) = \mathcal{M} \; \wedge \; \circ: M \times M \to M)</math> such that
<math>\exists M, \circ</math> with <math>((M; \circ) = \mathcal{M} \; \wedge \; \circ: M \times M \to M)</math> such that


<math>\forall a \in M \, \exists b \in M \, \forall c \in M \; c \circ (a \circ c) = b</math> (''left-equiponency law'').
: <math>\forall a, b \in M \; b \circ (a \circ b) = a \circ (a \circ a)</math> (''left-equiponency law'').
 
Equivalent
 
'''(2 b)''' <math>\exists M, \circ</math> with <math>((M; \circ) = \mathcal{M} \; \wedge \; \circ: M \times M \to M)</math> such that
 
: <math>\forall a, b c \in M \; a \circ (c \circ a) = b \circ (c \circ b)</math>
 
Equivalent
 
'''(2 c)''' <math>\exists M, \circ</math> with <math>((M; \circ) = \mathcal{M} \; \wedge \; \circ: M \times M \to M)</math> such that
 
: <math>\forall a \in M \, \exists b \in M \, \forall c \in M \; c \circ (a \circ c) = b</math>
 
 
Remark to 1 and 2: <math>M = \emptyset</math> is allowed.


Remark: <math>M = \emptyset</math> is allowed.


c) <math>\mathcal{M}</math> is termed '''column-preserving magma''' if and only if <math>\mathcal{M}</math> is a magma and
'''(3)''' <math>\mathcal{M}</math> is termed '''column-preserving magma''' if and only if <math>\mathcal{M}</math> is a magma and
<math>\exists M, \circ</math> with <math>(M; \circ) = \mathcal{M}</math> such that
<math>\exists M, \circ</math> with <math>(M; \circ) = \mathcal{M}</math> such that


<math>\forall a, b \in M \; b \circ (b \circ a) = a</math> (''column-preserving law'').
: <math>\forall a, b \in M \; b \circ (b \circ a) = a</math> (''column-preserving law'').


d) <math>\mathcal{M}</math> is termed '''row-preserving magma''' if and only if <math>\mathcal{M}</math> is a magma and
'''(4)''' <math>\mathcal{M}</math> is termed '''row-preserving magma''' if and only if <math>\mathcal{M}</math> is a magma and
<math>\exists M, \circ</math> with <math>(M; \circ) = \mathcal{M}</math> such that
<math>\exists M, \circ</math> with <math>(M; \circ) = \mathcal{M}</math> such that


<math>\forall a, b \in M \; (a \circ b) \circ b = a</math> (''row-preserving law'').
: <math>\forall a, b \in M \; (a \circ b) \circ b = a</math> (''row-preserving law'').
 


A magma <math>(M;\circ)</math> is termed
A magma <math>(M;\circ)</math> is termed
: e)  '''right static''' <math>: \Leftrightarrow \forall a \in M \, \exists b \in M \, \forall c \in M \; a \circ (b \circ c) = c</math> (''right-staticity law'').
: '''(5 a)''' '''right static''' <math>: \Leftrightarrow \forall a \in M \, \exists b \in M \, \forall c \in M \; a \circ (b \circ c) = c</math> (''right-staticity law'').
: f)  '''II static''' <math>: \Leftrightarrow \forall a \in M \, \exists b \in M \, \forall c \in M \; (b \circ c) \circ a = c</math> (''II-staticity law'').
: '''(5 b)''' '''II static''' <math>: \Leftrightarrow \forall a \in M \, \exists b \in M \, \forall c \in M \; (b \circ c) \circ a = c</math> (''II-staticity law'').
: g)  '''III static''' <math>: \Leftrightarrow \forall a \in M \, \exists b \in M \, \forall c \in M \; a \circ (c \circ b) = c</math> (''III-staticity law'').
: '''(5 c)''' '''III static''' <math>: \Leftrightarrow \forall a \in M \, \exists b \in M \, \forall c \in M \; a \circ (c \circ b) = c</math> (''III-staticity law'').
: h)  '''left static''' <math>: \Leftrightarrow \forall a \in M \, \exists b \in M \, \forall c \in M \; (c \circ b) \circ a = c</math> (''left-staticity law'').
: '''(5 d)''' '''left static''' <math>: \Leftrightarrow \forall a \in M \, \exists b \in M \, \forall c \in M \; (c \circ b) \circ a = c</math> (''left-staticity law'').
: i)  '''V static''' <math>: \Leftrightarrow \forall a \in M \, \exists b \in M \, \forall c \in M \; b \circ (a \circ c) = c</math> (''V-staticity law'').
: '''(5 e)''' '''V static''' <math>: \Leftrightarrow \forall a \in M \, \exists b \in M \, \forall c \in M \; b \circ (a \circ c) = c</math> (''V-staticity law'').
: j)  '''VI static''' <math>: \Leftrightarrow \forall a \in M \, \exists b \in M \, \forall c \in M \; (a \circ c) \circ b = c</math> (''VI-staticity law'').
: '''(5 f)''' '''VI static''' <math>: \Leftrightarrow \forall a \in M \, \exists b \in M \, \forall c \in M \; (a \circ c) \circ b = c</math> (''VI-staticity law'').
: k)  '''VII static''' <math>: \Leftrightarrow \forall a \in M \, \exists b \in M \, \forall c \in M \; b \circ (c \circ a) = c</math> (''VII-staticity law'').
: '''(5 g)''' '''VII static''' <math>: \Leftrightarrow \forall a \in M \, \exists b \in M \, \forall c \in M \; b \circ (c \circ a) = c</math> (''VII-staticity law'').
: l)  '''VIII static''' <math>: \Leftrightarrow \forall a \in M \, \exists b \in M \, \forall c \in M \; (c \circ a) \circ b = c</math> (''VIII-staticity law'').
: '''(5 h)''' '''VIII static''' <math>: \Leftrightarrow \forall a \in M \, \exists b \in M \, \forall c \in M \; (c \circ a) \circ b = c</math> (''VIII-staticity law'').

Revision as of 16:36, 27 September 2014

(1 a) is termed right-equiponent magma or R-equiponent magma if and only if with such that

(right-equiponency law).

Equivalent

(1 b) with such that

Equivalent

(1 c) with such that


(2 a) is termed left-equiponent magma or L-equiponent magma if and only if with such that

(left-equiponency law).

Equivalent

(2 b) with such that

Equivalent

(2 c) with such that


Remark to 1 and 2: is allowed.


(3) is termed column-preserving magma if and only if is a magma and with such that

(column-preserving law).

(4) is termed row-preserving magma if and only if is a magma and with such that

(row-preserving law).


A magma is termed

(5 a) right static (right-staticity law).
(5 b) II static (II-staticity law).
(5 c) III static (III-staticity law).
(5 d) left static (left-staticity law).
(5 e) V static (V-staticity law).
(5 f) VI static (VI-staticity law).
(5 g) VII static (VII-staticity law).
(5 h) VIII static (VIII-staticity law).