Order formulas for linear groups: Difference between revisions
No edit summary |
|||
| Line 15: | Line 15: | ||
|- | |- | ||
| [[projective general linear group]] || <math>PGL(n,q)</math> or <math>PGL(n,\mathbb{F}_q)</math> || <math>\frac{\prod_{i=0}^{n-1} (q^n - q^i)}{q - 1}</math> || <math>q^{\binom{n}{2}} \prod_{i=0}^{n-2} (q^{n-i} - 1)</math> || <math>q^{\binom{n}{2}} (q - 1)^{n - 1} \prod_{d=2}^n (\Phi_d(q))^{\lfloor n/d \rfloor}</math> || <math>n^2 - 1</math> || <math>\binom{n}{2} = \frac{n(n- 1)}{2}</math> || <math>n - 1</math> || <toggledisplay>The group is the quotient of <math>GL(n,q)</math> by the center, which is the subgroup of scalar matrices, and is isomorphic to <math>\mathbb{F}_q^\ast</math>. Its order is thus <math>|GL(n,q)|/|\mathbb{F}_q^\ast|</math>.</toggledisplay> | | [[projective general linear group]] || <math>PGL(n,q)</math> or <math>PGL(n,\mathbb{F}_q)</math> || <math>\frac{\prod_{i=0}^{n-1} (q^n - q^i)}{q - 1}</math> || <math>q^{\binom{n}{2}} \prod_{i=0}^{n-2} (q^{n-i} - 1)</math> || <math>q^{\binom{n}{2}} (q - 1)^{n - 1} \prod_{d=2}^n (\Phi_d(q))^{\lfloor n/d \rfloor}</math> || <math>n^2 - 1</math> || <math>\binom{n}{2} = \frac{n(n- 1)}{2}</math> || <math>n - 1</math> || <toggledisplay>The group is the quotient of <math>GL(n,q)</math> by the center, which is the subgroup of scalar matrices, and is isomorphic to <math>\mathbb{F}_q^\ast</math>. Its order is thus <math>|GL(n,q)|/|\mathbb{F}_q^\ast|</math>.</toggledisplay> | ||
|- | |||
| [[projective general linear group]] || <math>PGL(n,q)</math> or <math>PGL(n,\mathbb{F}_q)</math> || <math>\frac{\prod_{i=0}^{n-1} (q^n - q^i)}{(q - 1)\operatorname{gcd}(n,q-1)}</math> || <math>q^{\binom{n}{2}} \frac{\prod_{i=0}^{n-2} (q^{n-i} - 1)}{\operatorname{gcd}(n,q-1)}</math> || <math>q^{\binom{n}{2}} \frac{(q - 1)^{n - 1} \prod_{d=2}^n (\Phi_d(q))^{\lfloor n/d \rfloor}}{\operatorname{gcd}(n,q-1)}</math> || <math>n^2 - 1</math> || <math>\binom{n}{2} = \frac{n(n- 1)}{2}</math> || <math>n - 1</math> || <toggledisplay>The group is the quotient of <math>SL(n,q)</math> by its intersection with the center, which is the subgroup of scalar matrices of determinant 1, and this group is cyclic of order <math>\operatorname{gcd}(n,q-1)</math>. Its order is thus <math>|SL(n,q)|/\operatorname{gcd}(n,q-1)</math>.</toggledisplay> | |||
|} | |} | ||
Revision as of 20:15, 30 August 2012
This article gives a list of formulas for the orders of the general linear group of finite degree and some other related groups, both for a finite field of size and for related rings.
For a finite field of size
Formulas
In the formulas below, the field size is and the degree (order of matrices involved, dimension of vector space being acted upon) is . The characteristic of the field is a prime number . is a prime power with underlying prime . We let , so and is a nonnegative integer.
| Group | Symbolic notation | Order formula | Order formula (powers of taken out) | Order formula (maximally factorized) | Degree as polynomial in (same as algebraic dimension) | Multiplicity of factor | Multiplicity of factor | Quick explanation for order |
|---|---|---|---|---|---|---|---|---|
| general linear group | or | [SHOW MORE] | ||||||
| special linear group | or | [SHOW MORE] | ||||||
| projective general linear group | or | [SHOW MORE] | ||||||
| projective general linear group | or | [SHOW MORE] |