Order formulas for linear groups: Difference between revisions

From Groupprops
No edit summary
Line 15: Line 15:
|-
|-
| [[projective general linear group]] || <math>PGL(n,q)</math> or <math>PGL(n,\mathbb{F}_q)</math> || <math>\frac{\prod_{i=0}^{n-1} (q^n - q^i)}{q - 1}</math> || <math>q^{\binom{n}{2}} \prod_{i=0}^{n-2} (q^{n-i} - 1)</math> || <math>q^{\binom{n}{2}} (q - 1)^{n - 1} \prod_{d=2}^n (\Phi_d(q))^{\lfloor n/d \rfloor}</math> || <math>n^2 - 1</math> || <math>\binom{n}{2} = \frac{n(n- 1)}{2}</math> || <math>n - 1</math> || <toggledisplay>The group is the quotient of <math>GL(n,q)</math> by the center, which is the subgroup of scalar matrices, and is isomorphic to <math>\mathbb{F}_q^\ast</math>. Its order is thus <math>|GL(n,q)|/|\mathbb{F}_q^\ast|</math>.</toggledisplay>
| [[projective general linear group]] || <math>PGL(n,q)</math> or <math>PGL(n,\mathbb{F}_q)</math> || <math>\frac{\prod_{i=0}^{n-1} (q^n - q^i)}{q - 1}</math> || <math>q^{\binom{n}{2}} \prod_{i=0}^{n-2} (q^{n-i} - 1)</math> || <math>q^{\binom{n}{2}} (q - 1)^{n - 1} \prod_{d=2}^n (\Phi_d(q))^{\lfloor n/d \rfloor}</math> || <math>n^2 - 1</math> || <math>\binom{n}{2} = \frac{n(n- 1)}{2}</math> || <math>n - 1</math> || <toggledisplay>The group is the quotient of <math>GL(n,q)</math> by the center, which is the subgroup of scalar matrices, and is isomorphic to <math>\mathbb{F}_q^\ast</math>. Its order is thus <math>|GL(n,q)|/|\mathbb{F}_q^\ast|</math>.</toggledisplay>
|-
| [[projective general linear group]] || <math>PGL(n,q)</math> or <math>PGL(n,\mathbb{F}_q)</math> || <math>\frac{\prod_{i=0}^{n-1} (q^n - q^i)}{(q - 1)\operatorname{gcd}(n,q-1)}</math> || <math>q^{\binom{n}{2}} \frac{\prod_{i=0}^{n-2} (q^{n-i} - 1)}{\operatorname{gcd}(n,q-1)}</math> || <math>q^{\binom{n}{2}} \frac{(q - 1)^{n - 1} \prod_{d=2}^n (\Phi_d(q))^{\lfloor n/d \rfloor}}{\operatorname{gcd}(n,q-1)}</math> || <math>n^2 - 1</math> || <math>\binom{n}{2} = \frac{n(n- 1)}{2}</math> || <math>n - 1</math> || <toggledisplay>The group is the quotient of <math>SL(n,q)</math> by its intersection with the center, which is the subgroup of scalar matrices of determinant 1, and this group is cyclic of order <math>\operatorname{gcd}(n,q-1)</math>. Its order is thus <math>|SL(n,q)|/\operatorname{gcd}(n,q-1)</math>.</toggledisplay>
|}
|}

Revision as of 20:15, 30 August 2012

This article gives a list of formulas for the orders of the general linear group of finite degree and some other related groups, both for a finite field of size and for related rings.

For a finite field of size

Formulas

In the formulas below, the field size is and the degree (order of matrices involved, dimension of vector space being acted upon) is . The characteristic of the field is a prime number . is a prime power with underlying prime . We let , so and is a nonnegative integer.

Group Symbolic notation Order formula Order formula (powers of taken out) Order formula (maximally factorized) Degree as polynomial in (same as algebraic dimension) Multiplicity of factor Multiplicity of factor Quick explanation for order
general linear group or [SHOW MORE]
special linear group or [SHOW MORE]
projective general linear group or [SHOW MORE]
projective general linear group or [SHOW MORE]