Element structure of special linear group:SL(2,7): Difference between revisions
Line 19: | Line 19: | ||
| Not diagonal, Jordan block of size two || <math>\{ 1, 1 \}</math> or <math>\{ -1,-1\}</math> || <math>x^2 - 2x + 1</math> or <math>x^2 + 2x + 1</math> || <math>x^2 - 2x + 1</math> or <math>x^2 + 2x + 1</math> || <math>(q^2 - 1)/2</math> || 24 || 4 || 4 || <math>2(q^2 - 1)</math> || 96 || <toggledisplay><math>\begin{pmatrix} 1 & 1 \\ 0 & 1 \\\end{pmatrix}</math>, <math>\begin{pmatrix} 1 & -1 \\ 0 & 1 \\\end{pmatrix}</math>, <math>\begin{pmatrix} -1 & 1 \\ 0 & -1 \\\end{pmatrix}</math>, <math>\begin{pmatrix} -1 & -1 \\ 0 & -1 \\\end{pmatrix}</math></toggledisplay> | | Not diagonal, Jordan block of size two || <math>\{ 1, 1 \}</math> or <math>\{ -1,-1\}</math> || <math>x^2 - 2x + 1</math> or <math>x^2 + 2x + 1</math> || <math>x^2 - 2x + 1</math> or <math>x^2 + 2x + 1</math> || <math>(q^2 - 1)/2</math> || 24 || 4 || 4 || <math>2(q^2 - 1)</math> || 96 || <toggledisplay><math>\begin{pmatrix} 1 & 1 \\ 0 & 1 \\\end{pmatrix}</math>, <math>\begin{pmatrix} 1 & -1 \\ 0 & 1 \\\end{pmatrix}</math>, <math>\begin{pmatrix} -1 & 1 \\ 0 & -1 \\\end{pmatrix}</math>, <math>\begin{pmatrix} -1 & -1 \\ 0 & -1 \\\end{pmatrix}</math></toggledisplay> | ||
|- | |- | ||
| Diagonalizable over [[field:F49]], not over [[field:F7]]. Must necessarily have no repeated eigenvalues. || <math>\{ \sqrt{-1}, -\sqrt{-1} \}</math>, <math>\{ 2 + \sqrt{3}, 2 - \sqrt{3} \}</math>, <math>\{ -2 + \sqrt{3}, -2 - \sqrt{3} \}</math> || <math>x^2 + 1</math>, <math>x^2 - 4x + 1</math>, <math>x^2 - 3x + 1</math> || <math>x^2 + 1</math>, <math>x^2 - 4x + 1</math>, <math>x^2 - 3x + 1</math> || <math>q(q - 1)</math> || 42 || <math>(q - 1)/2</math> || 3 || <math>q(q - 1)^2/2</math> || 126 || {{fillin}} | | Diagonalizable over <math>\mathbb{F}_{q^2}</math>, i.e., [[field:F49]], not over <math>\mathbb{F}_q</math>, i.e., [[field:F7]]. Must necessarily have no repeated eigenvalues. || For <math>q = 7</math>: <math>\{ \sqrt{-1}, -\sqrt{-1} \}</math>, <math>\{ 2 + \sqrt{3}, 2 - \sqrt{3} \}</math>, <math>\{ -2 + \sqrt{3}, -2 - \sqrt{3} \}</math> || For <math>q = 7</math>: <math>x^2 + 1</math>, <math>x^2 - 4x + 1</math>, <math>x^2 - 3x + 1</math> || For <math>q = 7</math>: <math>x^2 + 1</math>, <math>x^2 - 4x + 1</math>, <math>x^2 - 3x + 1</math> || <math>q(q - 1)</math> || 42 || <math>(q - 1)/2</math> || 3 || <math>q(q - 1)^2/2</math> || 126 || {{fillin}} | ||
|- | |- | ||
| Diagonalizable over [[field:F7]] with ''distinct'' diagonal entries || <math>\{ 2,4 \}</math>, <math>\{ 3,5 \}</math> || <math>x^2 - x + 1</math>, <math>x^2 + x + 1</math> || <math>x^2 - x + 1</math>, <math>x^2 + x + 1</math> || <math>q(q+1)</math> || 56 || <math>(q - 3)/2</math> || 2 || <math>q(q+1)(q-3)/2</math> || 112 || <toggledisplay><math>\begin{pmatrix} 2 & 0 \\ 0 & 4 \\\end{pmatrix}</math>, <math>\begin{pmatrix} 3 & 0 \\ 0 & 5 \\\end{pmatrix}</math></toggledisplay> | | Diagonalizable over <math>\mathbb{F}_q</math>, i.e., [[field:F7]] with ''distinct'' diagonal entries || For <math>q = 7</math>: <math>\{ 2,4 \}</math>, <math>\{ 3,5 \}</math> || For <math>q = 7</math>: <math>x^2 - x + 1</math>, <math>x^2 + x + 1</math> || For <math>q = 7</math>: <math>x^2 - x + 1</math>, <math>x^2 + x + 1</math> || <math>q(q+1)</math> || 56 || <math>(q - 3)/2</math> || 2 || <math>q(q+1)(q-3)/2</math> || 112 || <toggledisplay><math>\begin{pmatrix} 2 & 0 \\ 0 & 4 \\\end{pmatrix}</math>, <math>\begin{pmatrix} 3 & 0 \\ 0 & 5 \\\end{pmatrix}</math></toggledisplay> | ||
|- | |- | ||
| Total || NA || NA || NA || NA || NA || <math>q + 4</math> || 11 || <math>q^3 - q</math> || 336 || NA | | Total || NA || NA || NA || NA || NA || <math>q + 4</math> || 11 || <math>q^3 - q</math> || 336 || NA | ||
|} | |} |
Revision as of 20:44, 31 May 2012
This article gives specific information, namely, element structure, about a particular group, namely: special linear group:SL(2,7).
View element structure of particular groups | View other specific information about special linear group:SL(2,7)
This article gives detailed information about the element structure of special linear group:SL(2,7), which is a group of order 336.
See also element structure of special linear group of degree two.
Conjugacy class structure
Compare with element structure of special linear group of degree two over a finite field#Conjugacy class structure.
Nature of conjugacy class | Eigenvalue pairs of all conjugacy classes | Characteristic polynomials of all conjugacy classes | Minimal polynomials of all conjugacy classes | Size of conjugacy class (generic odd ) | Size of conjugacy class () | Number of such conjugacy classes (generic odd ) | Number of such conjugacy classes () | Total number of elements (generic odd ) | Total number of elements () | Representative matrices (one per conjugacy class) |
---|---|---|---|---|---|---|---|---|---|---|
Scalar | or | or | or | 1 | 1 | 2 | 2 | 2 | 2 | and |
Not diagonal, Jordan block of size two | or | or | or | 24 | 4 | 4 | 96 | [SHOW MORE] | ||
Diagonalizable over , i.e., field:F49, not over , i.e., field:F7. Must necessarily have no repeated eigenvalues. | For : , , | For : , , | For : , , | 42 | 3 | 126 | PLACEHOLDER FOR INFORMATION TO BE FILLED IN: [SHOW MORE] | |||
Diagonalizable over , i.e., field:F7 with distinct diagonal entries | For : , | For : , | For : , | 56 | 2 | 112 | [SHOW MORE] | |||
Total | NA | NA | NA | NA | NA | 11 | 336 | NA |