Linear representation theory of Mathieu group:M11: Difference between revisions

From Groupprops
(Created page with "{{group-specific information| information type = linear representation theory| group = Mathieu group:M11| connective = of}} ==Summary== <section begin="summary"/> {| class="s...")
 
No edit summary
Line 9: Line 9:
! Item !! Value
! Item !! Value
|-
|-
| [[degrees of irreducible representations]] over a [[splitting field]] (such as <math>\overline{\mathbb{Q}}</math> or <math>\mathbb{C}</math>) || 1,10,10,10,11,16,16,44,45,55<br>grouped form: 1 (1 time), 10 (3 times), 11 (1 time), 16 (2 times), 44 (1 time), 45 (1 time, 55 (1 time)<br>[[maximum degree of irreducible representation|maximum]]: 55, [[number of irreducible representations equals number of conjugacy classes|number]]: 10, [[sum of squares of degrees of irreducible representations equals order of group|sum of squares]]: 7920
| [[degrees of irreducible representations]] over a [[splitting field]] (such as <math>\overline{\mathbb{Q}}</math> or <math>\mathbb{C}</math>) || 1,10,10,10,11,16,16,44,45,55<br>grouped form: 1 (1 time), 10 (3 times), 11 (1 time), 16 (2 times), 44 (1 time), 45 (1 time, 55 (1 time)<br>[[maximum degree of irreducible representation|maximum]]: 55, [[quasirandom degree]]: 10, [[number of irreducible representations equals number of conjugacy classes|number]]: 10, [[lcm of degrees of irreducible representations|lcm]]: 7920, [[sum of squares of degrees of irreducible representations equals order of group|sum of squares]]: 7920
|}
|}
<section end="summary"/>
<section end="summary"/>

Revision as of 01:59, 19 April 2012

This article gives specific information, namely, linear representation theory, about a particular group, namely: Mathieu group:M11.
View linear representation theory of particular groups | View other specific information about Mathieu group:M11

Summary

Item Value
degrees of irreducible representations over a splitting field (such as or ) 1,10,10,10,11,16,16,44,45,55
grouped form: 1 (1 time), 10 (3 times), 11 (1 time), 16 (2 times), 44 (1 time), 45 (1 time, 55 (1 time)
maximum: 55, quasirandom degree: 10, number: 10, lcm: 7920, sum of squares: 7920

Family contexts

Family name Parameter value General discussion of linear representation theory of family
Mathieu group degree 11, i.e., the group linear representation theory of Mathieu groups

GAP implementation

Degrees of irreducible representations

The degrees of irreducible representations can be computed using the CharacterDegrees, CharacterTable, and MathieuGroup functions:

gap> CharacterDegrees(CharacterTable(MathieuGroup(11)));
[ [ 1, 1 ], [ 10, 3 ], [ 11, 1 ], [ 16, 2 ], [ 44, 1 ], [ 45, 1 ], [ 55, 1 ] ]

Character table

The character table can be computed using the Irr, CharacterTable, and MathieuGroup functions:

gap> Irr(CharacterTable(MathieuGroup(11)));
[ Character( CharacterTable( Group([ (1,2,3,4,5,6,7,8,9,10,11), (3,7,11,8)(4,10,5,6) ]) ), [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ),
  Character( CharacterTable( Group([ (1,2,3,4,5,6,7,8,9,10,11), (3,7,11,8)(4,10,5,6) ]) ), [ 10, 0, 0, 2, 2, 0, -1, 1, -1, -1 ] ),
  Character( CharacterTable( Group([ (1,2,3,4,5,6,7,8,9,10,11), (3,7,11,8)(4,10,5,6) ]) ), [ 10, -E(8)-E(8)^3, E(8)+E(8)^3, 0, -2, 0, 1, 1, -1, -1 ] ),
  Character( CharacterTable( Group([ (1,2,3,4,5,6,7,8,9,10,11), (3,7,11,8)(4,10,5,6) ]) ), [ 10, E(8)+E(8)^3, -E(8)-E(8)^3, 0, -2, 0, 1, 1, -1, -1 ] ),
  Character( CharacterTable( Group([ (1,2,3,4,5,6,7,8,9,10,11), (3,7,11,8)(4,10,5,6) ]) ), [ 11, -1, -1, -1, 3, 1, 0, 2, 0, 0 ] ),
  Character( CharacterTable( Group([ (1,2,3,4,5,6,7,8,9,10,11), (3,7,11,8)(4,10,5,6) ]) ),
    [ 16, 0, 0, 0, 0, 1, 0, -2, E(11)^2+E(11)^6+E(11)^7+E(11)^8+E(11)^10, E(11)+E(11)^3+E(11)^4+E(11)^5+E(11)^9 ] ), Character( CharacterTable( Group(
    [ (1,2,3,4,5,6,7,8,9,10,11), (3,7,11,8)(4,10,5,6) ]) ), [ 16, 0, 0, 0, 0, 1, 0, -2, E(11)+E(11)^3+E(11)^4+E(11)^5+E(11)^9,
      E(11)^2+E(11)^6+E(11)^7+E(11)^8+E(11)^10 ] ), Character( CharacterTable( Group([ (1,2,3,4,5,6,7,8,9,10,11), (3,7,11,8)(4,10,5,6) ]) ),
    [ 44, 0, 0, 0, 4, -1, 1, -1, 0, 0 ] ), Character( CharacterTable( Group([ (1,2,3,4,5,6,7,8,9,10,11), (3,7,11,8)(4,10,5,6) ]) ),
    [ 45, -1, -1, 1, -3, 0, 0, 0, 1, 1 ] ), Character( CharacterTable( Group([ (1,2,3,4,5,6,7,8,9,10,11), (3,7,11,8)(4,10,5,6) ]) ),
    [ 55, 1, 1, -1, -1, 0, -1, 1, 0, 0 ] ) ]