Element structure of groups of order 243: Difference between revisions

From Groupprops
No edit summary
No edit summary
Line 1: Line 1:
{{all given order groups-specific information|
order = 243|
information type = element structure|
connective = of}}
==Conjugacy class sizes==
{{conjugacy class structure facts to check against}}
===Full listing===
{{fillin}}
===Grouping by conjugacy class sizes===
{| class="sortable" border="1"
! Number of conjugacy classes of size 1 !! Number of conjugacy classes of size 3 !! Number of conjugacy classes of size 9 !! Number of conjugacy classes of size 27 !! Total [[number of conjugacy classes]] !! Total number of groups with these conjugacy class sizes !! Nilpotency class(es) attained by these groups !! Description of groups !! List of GAP IDs second part (ascending order)
|-
| 243 || 0 || 0 || 0 || 243 || 7 || 1 || all the [[abelian group]]s of order 243 || 1, 10, 23, 31, 48, 61, 67
|-
| 27 || 72 || 0 || 0 || 99 || 15 || 2 || ||  2, 11, 12, 21, 24, 32, 33, 34, 35, 36, 49, 50, 62, 63, 64
|-
| 3 || 80 || 0 || 0 || 83 || 2 || 2 || the [[extraspecial group]]s of order 243 || 65, 66
|-
| 9 || 24 || 18 || 0 || 51 || 24 || 2, 3|| || 13, 14, 15, 16, 17, 18, 19, 20, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 51, 52, 53, 54, 55
|-
| 9 || 0 || 26 || 0 || 35 || 7 || 3 || || 3, 4, 5, 6, 7, 8, 9
|-
| 3 || 26 || 0 || 6 || 35 || 3 || 4 || || 25, 26, 27
|-
| 3 || 8 || 24 || 0 || 35 || 6 || 3 || || 22, 56, 57, 57, 59, 60
|-
| 3 || 2 || 8 || 6 || 19 || 3 || 4 || || 28, 29, 30
|}
==Order statistics==
==Order statistics==



Revision as of 21:56, 6 June 2011

This article gives specific information, namely, element structure, about a family of groups, namely: groups of order 243.
View element structure of group families | View element structure of groups of a particular order |View other specific information about groups of order 243

Conjugacy class sizes

FACTS TO CHECK AGAINST FOR CONJUGACY CLASS SIZES AND STRUCTURE:
Divisibility facts: size of conjugacy class divides order of group | size of conjugacy class divides index of center | size of conjugacy class equals index of centralizer
Bounding facts: size of conjugacy class is bounded by order of derived subgroup
Counting facts: number of conjugacy classes equals number of irreducible representations | class equation of a group

Full listing

PLACEHOLDER FOR INFORMATION TO BE FILLED IN: [SHOW MORE]

Grouping by conjugacy class sizes

Number of conjugacy classes of size 1 Number of conjugacy classes of size 3 Number of conjugacy classes of size 9 Number of conjugacy classes of size 27 Total number of conjugacy classes Total number of groups with these conjugacy class sizes Nilpotency class(es) attained by these groups Description of groups List of GAP IDs second part (ascending order)
243 0 0 0 243 7 1 all the abelian groups of order 243 1, 10, 23, 31, 48, 61, 67
27 72 0 0 99 15 2 2, 11, 12, 21, 24, 32, 33, 34, 35, 36, 49, 50, 62, 63, 64
3 80 0 0 83 2 2 the extraspecial groups of order 243 65, 66
9 24 18 0 51 24 2, 3 13, 14, 15, 16, 17, 18, 19, 20, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 51, 52, 53, 54, 55
9 0 26 0 35 7 3 3, 4, 5, 6, 7, 8, 9
3 26 0 6 35 3 4 25, 26, 27
3 8 24 0 35 6 3 22, 56, 57, 57, 59, 60
3 2 8 6 19 3 4 28, 29, 30

Order statistics

FACTS TO CHECK AGAINST:

ORDER STATISTICS (cf. order statistics, order statistics-equivalent finite groups): number of nth roots is a multiple of n | Finite abelian groups with the same order statistics are isomorphic | Lazard Lie group has the same order statistics as the additive group of its Lazard Lie ring | Frobenius conjecture on nth roots

1-ISOMORPHISM (cf. 1-isomorphic groups): Lazard Lie group is 1-isomorphic to the additive group of its Lazard Lie ring | order statistics-equivalent not implies 1-isomorphic

Order statistics raw data

Here are the order statistics (non-cumulative version):

Group Second part of GAP ID Order 1 Order 3 Order 9 Order 27 Order 81 Order 243
Cyclic group:Z243 1 1 2 6 18 54 162
2 1 26 216 0 0 0
3 1 134 108 0 0 0
4 1 80 162 0 0 0
5 1 26 216 0 0 0
6 1 80 162 0 0 0
7 1 26 216 0 0 0
8 1 26 216 0 0 0
9 1 26 216 0 0 0
Direct product of Z27 and Z9 10 1 8 72 162 0 0
11 1 8 72 162 0 0
12 1 26 54 162 0 0
13 1 80 162 0 0 0
14 1 26 216 0 0 0
15 1 26 216 0 0 0
16 1 26 54 162 0 0
17 1 80 162 0 0 0
18 1 26 216 0 0 0
19 1 26 54 162 0 0
20 1 26 54 162 0 0
21 1 8 72 162 0 0
Sylow subgroup of holomorph of Z27 22 1 8 72 162 0 0
Direct product of Z81 and Z3 23 1 8 18 54 162 0
24 1 8 18 54 162 0
25 1 62 180 0 0 0
26 1 170 72 0 0 0
27 1 8 234 0 0 0
28 1 116 126 0 0 0
29 1 8 234 0 0 0
30 1 62 180 0 0 0
Direct product of Z9 and Z9 and Z3 31 1 26 216 0 0 0
32 1 80 162 0 0 0
33 1 26 216 0 0 0
34 1 26 216 0 0 0
35 1 80 162 0 0 0
36 1 26 216 0 0 0
37 1 242 0 0 0 0
38 1 80 162 0 0 0
39 1 80 162 0 0 0
40 1 80 162 0 0 0
41 1 26 216 0 0 0
42 1 26 216 0 0 0
43 1 26 216 0 0 0
44 1 26 216 0 0 0
45 1 26 216 0 0 0
46 1 26 216 0 0 0
47 1 26 216 0 0 0
Direct product of Z27 and E9 48 1 26 54 162 0 0
49 1 26 54 162 0 0
50 1 26 54 162 0 0
51 1 134 108 0 0 0
52 1 80 162 0 0 0
53 1 188 54 0 0 0
54 1 26 216 0 0 0
55 1 80 162 0 0 0
56 1 134 108 0 0 0
57 1 80 162 0 0 0
58 1 188 54 0 0 0
59 1 26 216 0 0 0
60 1 80 162 0 0 0
Direct product of Z9 and E27 61 1 80 162 0 0 0
62 1 242 0 0 0 0
63 1 80 162 0 0 0
64 1 80 162 0 0 0
65 1 242 0 0 0 0
66 1 80 162 0 0 0
Elementary abelian group:E243 67 1 242 0 0 0 0

Here is the GAP code to generate these order statistics:[SHOW MORE]

Here are the order statistics (cumulative version):

Group Second part of GAP ID 1st roots 3rd roots 9th roots 27th roots 81st roots 243th roots
1 1 3 9 27 81 243
2 1 27 243 243 243 243
3 1 135 243 243 243 243
4 1 81 243 243 243 243
5 1 27 243 243 243 243
6 1 81 243 243 243 243
7 1 27 243 243 243 243
8 1 27 243 243 243 243
9 1 27 243 243 243 243
Direct product of Z27 and Z9 10 1 9 81 243 243 243
11 1 9 81 243 243 243
12 1 27 81 243 243 243
13 1 81 243 243 243 243
14 1 27 243 243 243 243
15 1 27 243 243 243 243
16 1 27 81 243 243 243
17 1 81 243 243 243 243
18 1 27 243 243 243 243
19 1 27 81 243 243 243
20 1 27 81 243 243 243
21 1 9 81 243 243 243
Sylow subgroup of holomorph of Z27 22 1 9 81 243 243 243
Direct product of Z81 and Z3 23 1 9 27 81 243 243
24 1 9 27 81 243 243
25 1 63 243 243 243 243
26 1 171 243 243 243 243
27 1 9 243 243 243 243
28 1 117 243 243 243 243
29 1 9 243 243 243 243
30 1 63 243 243 243 243
Direct product of Z9 and Z9 and Z3 31 1 27 243 243 243 243
32 1 81 243 243 243 243
33 1 27 243 243 243 243
34 1 27 243 243 243 243
35 1 81 243 243 243 243
36 1 27 243 243 243 243
37 1 243 243 243 243 243
38 1 81 243 243 243 243
39 1 81 243 243 243 243
40 1 81 243 243 243 243
41 1 27 243 243 243 243
42 1 27 243 243 243 243
43 1 27 243 243 243 243
44 1 27 243 243 243 243
45 1 27 243 243 243 243
46 1 27 243 243 243 243
47 1 27 243 243 243 243
Direct product of Z27 and E9 48 1 27 81 243 243 243
49 1 27 81 243 243 243
50 1 27 81 243 243 243
51 1 135 243 243 243 243
52 1 81 243 243 243 243
53 1 189 243 243 243 243
54 1 27 243 243 243 243
55 1 81 243 243 243 243
56 1 135 243 243 243 243
57 1 81 243 243 243 243
58 1 189 243 243 243 243
59 1 27 243 243 243 243
60 1 81 243 243 243 243
Direct product of Z9 and E27 61 1 81 243 243 243 243
62 1 243 243 243 243 243
63 1 81 243 243 243 243
64 1 81 243 243 243 243
65 1 243 243 243 243 243
66 1 81 243 243 243 243
Elementary abelian group:E243 67 1 243 243 243 243 243

Here is the GAP code to generate these order statistics:[SHOW MORE]