Element structure of groups of order 243: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{all given order groups-specific information| | |||
order = 243| | |||
information type = element structure| | |||
connective = of}} | |||
==Conjugacy class sizes== | |||
{{conjugacy class structure facts to check against}} | |||
===Full listing=== | |||
{{fillin}} | |||
===Grouping by conjugacy class sizes=== | |||
{| class="sortable" border="1" | |||
! Number of conjugacy classes of size 1 !! Number of conjugacy classes of size 3 !! Number of conjugacy classes of size 9 !! Number of conjugacy classes of size 27 !! Total [[number of conjugacy classes]] !! Total number of groups with these conjugacy class sizes !! Nilpotency class(es) attained by these groups !! Description of groups !! List of GAP IDs second part (ascending order) | |||
|- | |||
| 243 || 0 || 0 || 0 || 243 || 7 || 1 || all the [[abelian group]]s of order 243 || 1, 10, 23, 31, 48, 61, 67 | |||
|- | |||
| 27 || 72 || 0 || 0 || 99 || 15 || 2 || || 2, 11, 12, 21, 24, 32, 33, 34, 35, 36, 49, 50, 62, 63, 64 | |||
|- | |||
| 3 || 80 || 0 || 0 || 83 || 2 || 2 || the [[extraspecial group]]s of order 243 || 65, 66 | |||
|- | |||
| 9 || 24 || 18 || 0 || 51 || 24 || 2, 3|| || 13, 14, 15, 16, 17, 18, 19, 20, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 51, 52, 53, 54, 55 | |||
|- | |||
| 9 || 0 || 26 || 0 || 35 || 7 || 3 || || 3, 4, 5, 6, 7, 8, 9 | |||
|- | |||
| 3 || 26 || 0 || 6 || 35 || 3 || 4 || || 25, 26, 27 | |||
|- | |||
| 3 || 8 || 24 || 0 || 35 || 6 || 3 || || 22, 56, 57, 57, 59, 60 | |||
|- | |||
| 3 || 2 || 8 || 6 || 19 || 3 || 4 || || 28, 29, 30 | |||
|} | |||
==Order statistics== | ==Order statistics== | ||
Revision as of 21:56, 6 June 2011
This article gives specific information, namely, element structure, about a family of groups, namely: groups of order 243.
View element structure of group families | View element structure of groups of a particular order |View other specific information about groups of order 243
Conjugacy class sizes
FACTS TO CHECK AGAINST FOR CONJUGACY CLASS SIZES AND STRUCTURE:
Divisibility facts: size of conjugacy class divides order of group | size of conjugacy class divides index of center | size of conjugacy class equals index of centralizer
Bounding facts: size of conjugacy class is bounded by order of derived subgroup
Counting facts: number of conjugacy classes equals number of irreducible representations | class equation of a group
Full listing
PLACEHOLDER FOR INFORMATION TO BE FILLED IN: [SHOW MORE]
Grouping by conjugacy class sizes
Number of conjugacy classes of size 1 | Number of conjugacy classes of size 3 | Number of conjugacy classes of size 9 | Number of conjugacy classes of size 27 | Total number of conjugacy classes | Total number of groups with these conjugacy class sizes | Nilpotency class(es) attained by these groups | Description of groups | List of GAP IDs second part (ascending order) |
---|---|---|---|---|---|---|---|---|
243 | 0 | 0 | 0 | 243 | 7 | 1 | all the abelian groups of order 243 | 1, 10, 23, 31, 48, 61, 67 |
27 | 72 | 0 | 0 | 99 | 15 | 2 | 2, 11, 12, 21, 24, 32, 33, 34, 35, 36, 49, 50, 62, 63, 64 | |
3 | 80 | 0 | 0 | 83 | 2 | 2 | the extraspecial groups of order 243 | 65, 66 |
9 | 24 | 18 | 0 | 51 | 24 | 2, 3 | 13, 14, 15, 16, 17, 18, 19, 20, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 51, 52, 53, 54, 55 | |
9 | 0 | 26 | 0 | 35 | 7 | 3 | 3, 4, 5, 6, 7, 8, 9 | |
3 | 26 | 0 | 6 | 35 | 3 | 4 | 25, 26, 27 | |
3 | 8 | 24 | 0 | 35 | 6 | 3 | 22, 56, 57, 57, 59, 60 | |
3 | 2 | 8 | 6 | 19 | 3 | 4 | 28, 29, 30 |
Order statistics
FACTS TO CHECK AGAINST:
ORDER STATISTICS (cf. order statistics, order statistics-equivalent finite groups): number of nth roots is a multiple of n | Finite abelian groups with the same order statistics are isomorphic | Lazard Lie group has the same order statistics as the additive group of its Lazard Lie ring | Frobenius conjecture on nth roots
1-ISOMORPHISM (cf. 1-isomorphic groups): Lazard Lie group is 1-isomorphic to the additive group of its Lazard Lie ring | order statistics-equivalent not implies 1-isomorphic
Order statistics raw data
Here are the order statistics (non-cumulative version):
Group | Second part of GAP ID | Order 1 | Order 3 | Order 9 | Order 27 | Order 81 | Order 243 |
---|---|---|---|---|---|---|---|
Cyclic group:Z243 | 1 | 1 | 2 | 6 | 18 | 54 | 162 |
2 | 1 | 26 | 216 | 0 | 0 | 0 | |
3 | 1 | 134 | 108 | 0 | 0 | 0 | |
4 | 1 | 80 | 162 | 0 | 0 | 0 | |
5 | 1 | 26 | 216 | 0 | 0 | 0 | |
6 | 1 | 80 | 162 | 0 | 0 | 0 | |
7 | 1 | 26 | 216 | 0 | 0 | 0 | |
8 | 1 | 26 | 216 | 0 | 0 | 0 | |
9 | 1 | 26 | 216 | 0 | 0 | 0 | |
Direct product of Z27 and Z9 | 10 | 1 | 8 | 72 | 162 | 0 | 0 |
11 | 1 | 8 | 72 | 162 | 0 | 0 | |
12 | 1 | 26 | 54 | 162 | 0 | 0 | |
13 | 1 | 80 | 162 | 0 | 0 | 0 | |
14 | 1 | 26 | 216 | 0 | 0 | 0 | |
15 | 1 | 26 | 216 | 0 | 0 | 0 | |
16 | 1 | 26 | 54 | 162 | 0 | 0 | |
17 | 1 | 80 | 162 | 0 | 0 | 0 | |
18 | 1 | 26 | 216 | 0 | 0 | 0 | |
19 | 1 | 26 | 54 | 162 | 0 | 0 | |
20 | 1 | 26 | 54 | 162 | 0 | 0 | |
21 | 1 | 8 | 72 | 162 | 0 | 0 | |
Sylow subgroup of holomorph of Z27 | 22 | 1 | 8 | 72 | 162 | 0 | 0 |
Direct product of Z81 and Z3 | 23 | 1 | 8 | 18 | 54 | 162 | 0 |
24 | 1 | 8 | 18 | 54 | 162 | 0 | |
25 | 1 | 62 | 180 | 0 | 0 | 0 | |
26 | 1 | 170 | 72 | 0 | 0 | 0 | |
27 | 1 | 8 | 234 | 0 | 0 | 0 | |
28 | 1 | 116 | 126 | 0 | 0 | 0 | |
29 | 1 | 8 | 234 | 0 | 0 | 0 | |
30 | 1 | 62 | 180 | 0 | 0 | 0 | |
Direct product of Z9 and Z9 and Z3 | 31 | 1 | 26 | 216 | 0 | 0 | 0 |
32 | 1 | 80 | 162 | 0 | 0 | 0 | |
33 | 1 | 26 | 216 | 0 | 0 | 0 | |
34 | 1 | 26 | 216 | 0 | 0 | 0 | |
35 | 1 | 80 | 162 | 0 | 0 | 0 | |
36 | 1 | 26 | 216 | 0 | 0 | 0 | |
37 | 1 | 242 | 0 | 0 | 0 | 0 | |
38 | 1 | 80 | 162 | 0 | 0 | 0 | |
39 | 1 | 80 | 162 | 0 | 0 | 0 | |
40 | 1 | 80 | 162 | 0 | 0 | 0 | |
41 | 1 | 26 | 216 | 0 | 0 | 0 | |
42 | 1 | 26 | 216 | 0 | 0 | 0 | |
43 | 1 | 26 | 216 | 0 | 0 | 0 | |
44 | 1 | 26 | 216 | 0 | 0 | 0 | |
45 | 1 | 26 | 216 | 0 | 0 | 0 | |
46 | 1 | 26 | 216 | 0 | 0 | 0 | |
47 | 1 | 26 | 216 | 0 | 0 | 0 | |
Direct product of Z27 and E9 | 48 | 1 | 26 | 54 | 162 | 0 | 0 |
49 | 1 | 26 | 54 | 162 | 0 | 0 | |
50 | 1 | 26 | 54 | 162 | 0 | 0 | |
51 | 1 | 134 | 108 | 0 | 0 | 0 | |
52 | 1 | 80 | 162 | 0 | 0 | 0 | |
53 | 1 | 188 | 54 | 0 | 0 | 0 | |
54 | 1 | 26 | 216 | 0 | 0 | 0 | |
55 | 1 | 80 | 162 | 0 | 0 | 0 | |
56 | 1 | 134 | 108 | 0 | 0 | 0 | |
57 | 1 | 80 | 162 | 0 | 0 | 0 | |
58 | 1 | 188 | 54 | 0 | 0 | 0 | |
59 | 1 | 26 | 216 | 0 | 0 | 0 | |
60 | 1 | 80 | 162 | 0 | 0 | 0 | |
Direct product of Z9 and E27 | 61 | 1 | 80 | 162 | 0 | 0 | 0 |
62 | 1 | 242 | 0 | 0 | 0 | 0 | |
63 | 1 | 80 | 162 | 0 | 0 | 0 | |
64 | 1 | 80 | 162 | 0 | 0 | 0 | |
65 | 1 | 242 | 0 | 0 | 0 | 0 | |
66 | 1 | 80 | 162 | 0 | 0 | 0 | |
Elementary abelian group:E243 | 67 | 1 | 242 | 0 | 0 | 0 | 0 |
Here is the GAP code to generate these order statistics:[SHOW MORE]
Here are the order statistics (cumulative version):
Group | Second part of GAP ID | 1st roots | 3rd roots | 9th roots | 27th roots | 81st roots | 243th roots |
---|---|---|---|---|---|---|---|
1 | 1 | 3 | 9 | 27 | 81 | 243 | |
2 | 1 | 27 | 243 | 243 | 243 | 243 | |
3 | 1 | 135 | 243 | 243 | 243 | 243 | |
4 | 1 | 81 | 243 | 243 | 243 | 243 | |
5 | 1 | 27 | 243 | 243 | 243 | 243 | |
6 | 1 | 81 | 243 | 243 | 243 | 243 | |
7 | 1 | 27 | 243 | 243 | 243 | 243 | |
8 | 1 | 27 | 243 | 243 | 243 | 243 | |
9 | 1 | 27 | 243 | 243 | 243 | 243 | |
Direct product of Z27 and Z9 | 10 | 1 | 9 | 81 | 243 | 243 | 243 |
11 | 1 | 9 | 81 | 243 | 243 | 243 | |
12 | 1 | 27 | 81 | 243 | 243 | 243 | |
13 | 1 | 81 | 243 | 243 | 243 | 243 | |
14 | 1 | 27 | 243 | 243 | 243 | 243 | |
15 | 1 | 27 | 243 | 243 | 243 | 243 | |
16 | 1 | 27 | 81 | 243 | 243 | 243 | |
17 | 1 | 81 | 243 | 243 | 243 | 243 | |
18 | 1 | 27 | 243 | 243 | 243 | 243 | |
19 | 1 | 27 | 81 | 243 | 243 | 243 | |
20 | 1 | 27 | 81 | 243 | 243 | 243 | |
21 | 1 | 9 | 81 | 243 | 243 | 243 | |
Sylow subgroup of holomorph of Z27 | 22 | 1 | 9 | 81 | 243 | 243 | 243 |
Direct product of Z81 and Z3 | 23 | 1 | 9 | 27 | 81 | 243 | 243 |
24 | 1 | 9 | 27 | 81 | 243 | 243 | |
25 | 1 | 63 | 243 | 243 | 243 | 243 | |
26 | 1 | 171 | 243 | 243 | 243 | 243 | |
27 | 1 | 9 | 243 | 243 | 243 | 243 | |
28 | 1 | 117 | 243 | 243 | 243 | 243 | |
29 | 1 | 9 | 243 | 243 | 243 | 243 | |
30 | 1 | 63 | 243 | 243 | 243 | 243 | |
Direct product of Z9 and Z9 and Z3 | 31 | 1 | 27 | 243 | 243 | 243 | 243 |
32 | 1 | 81 | 243 | 243 | 243 | 243 | |
33 | 1 | 27 | 243 | 243 | 243 | 243 | |
34 | 1 | 27 | 243 | 243 | 243 | 243 | |
35 | 1 | 81 | 243 | 243 | 243 | 243 | |
36 | 1 | 27 | 243 | 243 | 243 | 243 | |
37 | 1 | 243 | 243 | 243 | 243 | 243 | |
38 | 1 | 81 | 243 | 243 | 243 | 243 | |
39 | 1 | 81 | 243 | 243 | 243 | 243 | |
40 | 1 | 81 | 243 | 243 | 243 | 243 | |
41 | 1 | 27 | 243 | 243 | 243 | 243 | |
42 | 1 | 27 | 243 | 243 | 243 | 243 | |
43 | 1 | 27 | 243 | 243 | 243 | 243 | |
44 | 1 | 27 | 243 | 243 | 243 | 243 | |
45 | 1 | 27 | 243 | 243 | 243 | 243 | |
46 | 1 | 27 | 243 | 243 | 243 | 243 | |
47 | 1 | 27 | 243 | 243 | 243 | 243 | |
Direct product of Z27 and E9 | 48 | 1 | 27 | 81 | 243 | 243 | 243 |
49 | 1 | 27 | 81 | 243 | 243 | 243 | |
50 | 1 | 27 | 81 | 243 | 243 | 243 | |
51 | 1 | 135 | 243 | 243 | 243 | 243 | |
52 | 1 | 81 | 243 | 243 | 243 | 243 | |
53 | 1 | 189 | 243 | 243 | 243 | 243 | |
54 | 1 | 27 | 243 | 243 | 243 | 243 | |
55 | 1 | 81 | 243 | 243 | 243 | 243 | |
56 | 1 | 135 | 243 | 243 | 243 | 243 | |
57 | 1 | 81 | 243 | 243 | 243 | 243 | |
58 | 1 | 189 | 243 | 243 | 243 | 243 | |
59 | 1 | 27 | 243 | 243 | 243 | 243 | |
60 | 1 | 81 | 243 | 243 | 243 | 243 | |
Direct product of Z9 and E27 | 61 | 1 | 81 | 243 | 243 | 243 | 243 |
62 | 1 | 243 | 243 | 243 | 243 | 243 | |
63 | 1 | 81 | 243 | 243 | 243 | 243 | |
64 | 1 | 81 | 243 | 243 | 243 | 243 | |
65 | 1 | 243 | 243 | 243 | 243 | 243 | |
66 | 1 | 81 | 243 | 243 | 243 | 243 | |
Elementary abelian group:E243 | 67 | 1 | 243 | 243 | 243 | 243 | 243 |
Here is the GAP code to generate these order statistics:[SHOW MORE]