Element structure of special linear group:SL(2,7): Difference between revisions

From Groupprops
Line 19: Line 19:
| Diagonalizable over [[field:F49]], not over [[field:F7]]. Must necessarily have no repeated eigenvalues. || Pair of conjugate elements of <math>\mathbb{F}_{49}</math> of norm 1 || <math>x^2 - 3x + 1</math>, <math>x^2 - 4x + 1</math> || Same as characteristic polynomial || 42 || 3 || 126 || Yes || No || No
| Diagonalizable over [[field:F49]], not over [[field:F7]]. Must necessarily have no repeated eigenvalues. || Pair of conjugate elements of <math>\mathbb{F}_{49}</math> of norm 1 || <math>x^2 - 3x + 1</math>, <math>x^2 - 4x + 1</math> || Same as characteristic polynomial || 42 || 3 || 126 || Yes || No || No
|-
|-
| Diagonalizable over <math>\mathbb{F}_q</math> with equal diagonal entries, hence a scalar || <math>\{ 1,1 \}</math> or <math>\{ -1,-1\}</math> || <math>(x - a)^2</math> where <math>a \in \{ -1,1 \}</math> || <math>x - a</math> where <math>a \in \{ -1,1\}</math> || 1 || 2 || 2 || Yes || Yes || No
| Diagonalizable over <math>\mathbb{F}_q</math> with equal diagonal entries, hence a scalar || <math>\{ 1,1 \}</math> or <math>\{ -1,-1\}</math> || <math>(x - a)^2</math> where <math>a \in \{ -1,1 \}</math> || Same as characteristic polynomial || 1 || 2 || 2 || Yes || Yes || No
|-
|-
| Not diagonal, has Jordan block of size two  || <math>1</math> (multiplicity 2) or <math>-1</math> (multiplicity 2) || <math>(x - a)^2</math> where <math>a \in \{ -1,1 \}</math> || <math>x - a</math> where <math>a \in \{ -1,1\}</math> || 24 || 4 || 96 || No || No || Yes (two conjugacy classes over <math>GL_2</math>, each splits into two over <math>SL_2</math>)
| Not diagonal, has Jordan block of size two  || <math>1</math> (multiplicity 2) or <math>-1</math> (multiplicity 2) || <math>(x - a)^2</math> where <math>a \in \{ -1,1 \}</math> || <math>x - a</math> where <math>a \in \{ -1,1\}</math> || 24 || 4 || 96 || No || No || Yes (two conjugacy classes over <math>GL_2</math>, each splits into two over <math>SL_2</math>)

Revision as of 18:43, 29 October 2010

This article gives specific information, namely, element structure, about a particular group, namely: special linear group:SL(2,7).
View element structure of particular groups | View other specific information about special linear group:SL(2,7)

This article gives detailed information about the element structure of special linear group:SL(2,7), which is a group of order 336.

See also element structure of special linear group of degree two.

Conjugacy class structure

Compare with element structure of special linear group of degree two#Conjugacy class structure.

Nature of conjugacy class Eigenvalues Characteristic polynomial Minimal polynomial Size of conjugacy class Number of such conjugacy classes Total number of elements Semisimple? Diagonalizable over ? Splits in relative to ?
Diagonalizable over field:F7 with distinct (and hence mutually inverse) diagonal entries and , Same as characteristic polynomial 56 2 112 Yes Yes No
Diagonalizable over field:F49, not over field:F7. Must necessarily have no repeated eigenvalues. Pair of conjugate elements of of norm 1 , Same as characteristic polynomial 42 3 126 Yes No No
Diagonalizable over with equal diagonal entries, hence a scalar or where Same as characteristic polynomial 1 2 2 Yes Yes No
Not diagonal, has Jordan block of size two (multiplicity 2) or (multiplicity 2) where where 24 4 96 No No Yes (two conjugacy classes over , each splits into two over )
Total NA NA NA NA 11 336 240 114 96