Element structure of special linear group:SL(2,7): Difference between revisions
Line 19: | Line 19: | ||
| Diagonalizable over [[field:F49]], not over [[field:F7]]. Must necessarily have no repeated eigenvalues. || Pair of conjugate elements of <math>\mathbb{F}_{49}</math> of norm 1 || <math>x^2 - 3x + 1</math>, <math>x^2 - 4x + 1</math> || Same as characteristic polynomial || 42 || 3 || 126 || Yes || No || No | | Diagonalizable over [[field:F49]], not over [[field:F7]]. Must necessarily have no repeated eigenvalues. || Pair of conjugate elements of <math>\mathbb{F}_{49}</math> of norm 1 || <math>x^2 - 3x + 1</math>, <math>x^2 - 4x + 1</math> || Same as characteristic polynomial || 42 || 3 || 126 || Yes || No || No | ||
|- | |- | ||
| Diagonalizable over <math>\mathbb{F}_q</math> with equal diagonal entries, hence a scalar || <math>\{ 1,1 \}</math> or <math>\{ -1,-1\}</math> || <math>(x - a)^2</math> where <math>a \in \{ -1,1 \}</math> || | | Diagonalizable over <math>\mathbb{F}_q</math> with equal diagonal entries, hence a scalar || <math>\{ 1,1 \}</math> or <math>\{ -1,-1\}</math> || <math>(x - a)^2</math> where <math>a \in \{ -1,1 \}</math> || Same as characteristic polynomial || 1 || 2 || 2 || Yes || Yes || No | ||
|- | |- | ||
| Not diagonal, has Jordan block of size two || <math>1</math> (multiplicity 2) or <math>-1</math> (multiplicity 2) || <math>(x - a)^2</math> where <math>a \in \{ -1,1 \}</math> || <math>x - a</math> where <math>a \in \{ -1,1\}</math> || 24 || 4 || 96 || No || No || Yes (two conjugacy classes over <math>GL_2</math>, each splits into two over <math>SL_2</math>) | | Not diagonal, has Jordan block of size two || <math>1</math> (multiplicity 2) or <math>-1</math> (multiplicity 2) || <math>(x - a)^2</math> where <math>a \in \{ -1,1 \}</math> || <math>x - a</math> where <math>a \in \{ -1,1\}</math> || 24 || 4 || 96 || No || No || Yes (two conjugacy classes over <math>GL_2</math>, each splits into two over <math>SL_2</math>) |
Revision as of 18:43, 29 October 2010
This article gives specific information, namely, element structure, about a particular group, namely: special linear group:SL(2,7).
View element structure of particular groups | View other specific information about special linear group:SL(2,7)
This article gives detailed information about the element structure of special linear group:SL(2,7), which is a group of order 336.
See also element structure of special linear group of degree two.
Conjugacy class structure
Compare with element structure of special linear group of degree two#Conjugacy class structure.
Nature of conjugacy class | Eigenvalues | Characteristic polynomial | Minimal polynomial | Size of conjugacy class | Number of such conjugacy classes | Total number of elements | Semisimple? | Diagonalizable over ? | Splits in relative to ? |
---|---|---|---|---|---|---|---|---|---|
Diagonalizable over field:F7 with distinct (and hence mutually inverse) diagonal entries | and | , | Same as characteristic polynomial | 56 | 2 | 112 | Yes | Yes | No |
Diagonalizable over field:F49, not over field:F7. Must necessarily have no repeated eigenvalues. | Pair of conjugate elements of of norm 1 | , | Same as characteristic polynomial | 42 | 3 | 126 | Yes | No | No |
Diagonalizable over with equal diagonal entries, hence a scalar | or | where | Same as characteristic polynomial | 1 | 2 | 2 | Yes | Yes | No |
Not diagonal, has Jordan block of size two | (multiplicity 2) or (multiplicity 2) | where | where | 24 | 4 | 96 | No | No | Yes (two conjugacy classes over , each splits into two over ) |
Total | NA | NA | NA | NA | 11 | 336 | 240 | 114 | 96 |