Sylow number: Difference between revisions

From Groupprops
No edit summary
No edit summary
Line 40: Line 40:
We can in fact refine the congruence condition further, to obtain certain conditions where we can force <math>n_p</math> to be 1 modulo higher powers of <math>p</math>. The idea in those is to argue that any intersection of Sylow subgroups must have large index in both.
We can in fact refine the congruence condition further, to obtain certain conditions where we can force <math>n_p</math> to be 1 modulo higher powers of <math>p</math>. The idea in those is to argue that any intersection of Sylow subgroups must have large index in both.


===Other facts===
* [[Congruence condition on Sylow numbers in terms of maximal Sylow intersection]]
==Using Sylow numbers==
==Using Sylow numbers==



Revision as of 13:52, 24 August 2010

Definition

Definition with symbols

Let be a finite group and a prime dividing the order of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G} . Then the Sylow number for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} , denoted as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n_p} , is any of the following equivalent values:

  • The number of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} -Sylow subgroups
  • The index of the normalizer of any Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} -Sylow subgroup

Equivalence of definitions

Further information: Sylow number equals index of Sylow normalizer

The equivalence of definitions follows from the fact that any two Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} -Sylow subgroups are conjugate.

Facts

It divides the index of the Sylow subgroup

Further information: Divisibility condition on Sylow numbers

Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m} be the index of the Sylow subgroup. Then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n_p} divides Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m} . The easiest way of seeing this is from the fact that if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P} is a Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} -Sylow subgroup, then:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [G:P] = [G:N_G(P)][N_G(P):P]}

or:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m = n_p [N_G(P):P]}

It is 1 modulo the prime

Further information: Congruence condition on Sylow numbers

This is the congruence condition on the Sylow number. It states that:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n_p \equiv 1 \mod p}

This follows from the fact that if we fix any one Sylow subgroup Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P} and look at the orbits on the set Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Syl_p(G)} of all Sylow subgroups under conjugation by elements of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P} , all the orbits except Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P} itself have sizes as multiples of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} .

We can in fact refine the congruence condition further, to obtain certain conditions where we can force Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n_p} to be 1 modulo higher powers of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} . The idea in those is to argue that any intersection of Sylow subgroups must have large index in both.

Other facts

Using Sylow numbers

Note that the above constraints on Sylow numbers are all constraints that arise purely from the order of the group. Thus, given any positive integer Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} , we define a set of Sylow numbers for this positive integer as a set (ordered) of associations of to each prime Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} dividing Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} such that there exists a group Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G} of order Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} whose Sylow numbers are precisely Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n_p} .

Of course, given a positive integer, there may be many possibilities for the set of Sylow numbers for that positive integer. Imposing conditions on the kind of group we allow can put further constraints on the set of Sylow numbers. For instance:

  • A set of simple Sylow numbers is a set of Sylow numbers that arises from a simple group.