Element structure of groups of order 243: Difference between revisions
No edit summary |
No edit summary |
||
Line 52: | Line 52: | ||
| ||21 || 1 || 8 || 72 || 162 || 0 || 0 | | ||21 || 1 || 8 || 72 || 162 || 0 || 0 | ||
|- | |- | ||
| ||22 || 1 || 8 || 72 || 162 || 0 || 0 | | [[Sylow subgroup of holomorph of Z27]] ||22 || 1 || 8 || 72 || 162 || 0 || 0 | ||
|- | |- | ||
| [[Direct product of Z81 and Z3]] ||23 || 1 || 8 || 18 || 54 || 162 || 0 | | [[Direct product of Z81 and Z3]] ||23 || 1 || 8 || 18 || 54 || 162 || 0 | ||
Line 216: | Line 216: | ||
| ||21 || 1 || 9 || 81 || 243 || 243 || 243 | | ||21 || 1 || 9 || 81 || 243 || 243 || 243 | ||
|- | |- | ||
| ||22 || 1 || 9 || 81 || 243 || 243 || 243 | | [[Sylow subgroup of holomorph of Z27]] ||22 || 1 || 9 || 81 || 243 || 243 || 243 | ||
|- | |- | ||
| [[Direct product of Z81 and Z3]] ||23 || 1 || 9 || 27 || 81 || 243 || 243 | | [[Direct product of Z81 and Z3]] ||23 || 1 || 9 || 27 || 81 || 243 || 243 |
Revision as of 18:40, 2 July 2010
Order statistics
FACTS TO CHECK AGAINST:
ORDER STATISTICS (cf. order statistics, order statistics-equivalent finite groups): number of nth roots is a multiple of n | Finite abelian groups with the same order statistics are isomorphic | Lazard Lie group has the same order statistics as the additive group of its Lazard Lie ring | Frobenius conjecture on nth roots
1-ISOMORPHISM (cf. 1-isomorphic groups): Lazard Lie group is 1-isomorphic to the additive group of its Lazard Lie ring | order statistics-equivalent not implies 1-isomorphic
Order statistics raw data
Here are the order statistics (non-cumulative version):
Group | Second part of GAP ID | Order 1 | Order 3 | Order 9 | Order 27 | Order 81 | Order 243 |
---|---|---|---|---|---|---|---|
Cyclic group:Z243 | 1 | 1 | 2 | 6 | 18 | 54 | 162 |
2 | 1 | 26 | 216 | 0 | 0 | 0 | |
3 | 1 | 134 | 108 | 0 | 0 | 0 | |
4 | 1 | 80 | 162 | 0 | 0 | 0 | |
5 | 1 | 26 | 216 | 0 | 0 | 0 | |
6 | 1 | 80 | 162 | 0 | 0 | 0 | |
7 | 1 | 26 | 216 | 0 | 0 | 0 | |
8 | 1 | 26 | 216 | 0 | 0 | 0 | |
9 | 1 | 26 | 216 | 0 | 0 | 0 | |
Direct product of Z27 and Z9 | 10 | 1 | 8 | 72 | 162 | 0 | 0 |
11 | 1 | 8 | 72 | 162 | 0 | 0 | |
12 | 1 | 26 | 54 | 162 | 0 | 0 | |
13 | 1 | 80 | 162 | 0 | 0 | 0 | |
14 | 1 | 26 | 216 | 0 | 0 | 0 | |
15 | 1 | 26 | 216 | 0 | 0 | 0 | |
16 | 1 | 26 | 54 | 162 | 0 | 0 | |
17 | 1 | 80 | 162 | 0 | 0 | 0 | |
18 | 1 | 26 | 216 | 0 | 0 | 0 | |
19 | 1 | 26 | 54 | 162 | 0 | 0 | |
20 | 1 | 26 | 54 | 162 | 0 | 0 | |
21 | 1 | 8 | 72 | 162 | 0 | 0 | |
Sylow subgroup of holomorph of Z27 | 22 | 1 | 8 | 72 | 162 | 0 | 0 |
Direct product of Z81 and Z3 | 23 | 1 | 8 | 18 | 54 | 162 | 0 |
24 | 1 | 8 | 18 | 54 | 162 | 0 | |
25 | 1 | 62 | 180 | 0 | 0 | 0 | |
26 | 1 | 170 | 72 | 0 | 0 | 0 | |
27 | 1 | 8 | 234 | 0 | 0 | 0 | |
28 | 1 | 116 | 126 | 0 | 0 | 0 | |
29 | 1 | 8 | 234 | 0 | 0 | 0 | |
30 | 1 | 62 | 180 | 0 | 0 | 0 | |
Direct product of Z9 and Z9 and Z3 | 31 | 1 | 26 | 216 | 0 | 0 | 0 |
32 | 1 | 80 | 162 | 0 | 0 | 0 | |
33 | 1 | 26 | 216 | 0 | 0 | 0 | |
34 | 1 | 26 | 216 | 0 | 0 | 0 | |
35 | 1 | 80 | 162 | 0 | 0 | 0 | |
36 | 1 | 26 | 216 | 0 | 0 | 0 | |
37 | 1 | 242 | 0 | 0 | 0 | 0 | |
38 | 1 | 80 | 162 | 0 | 0 | 0 | |
39 | 1 | 80 | 162 | 0 | 0 | 0 | |
40 | 1 | 80 | 162 | 0 | 0 | 0 | |
41 | 1 | 26 | 216 | 0 | 0 | 0 | |
42 | 1 | 26 | 216 | 0 | 0 | 0 | |
43 | 1 | 26 | 216 | 0 | 0 | 0 | |
44 | 1 | 26 | 216 | 0 | 0 | 0 | |
45 | 1 | 26 | 216 | 0 | 0 | 0 | |
46 | 1 | 26 | 216 | 0 | 0 | 0 | |
47 | 1 | 26 | 216 | 0 | 0 | 0 | |
Direct product of Z27 and E9 | 48 | 1 | 26 | 54 | 162 | 0 | 0 |
49 | 1 | 26 | 54 | 162 | 0 | 0 | |
50 | 1 | 26 | 54 | 162 | 0 | 0 | |
51 | 1 | 134 | 108 | 0 | 0 | 0 | |
52 | 1 | 80 | 162 | 0 | 0 | 0 | |
53 | 1 | 188 | 54 | 0 | 0 | 0 | |
54 | 1 | 26 | 216 | 0 | 0 | 0 | |
55 | 1 | 80 | 162 | 0 | 0 | 0 | |
56 | 1 | 134 | 108 | 0 | 0 | 0 | |
57 | 1 | 80 | 162 | 0 | 0 | 0 | |
58 | 1 | 188 | 54 | 0 | 0 | 0 | |
59 | 1 | 26 | 216 | 0 | 0 | 0 | |
60 | 1 | 80 | 162 | 0 | 0 | 0 | |
Direct product of Z9 and E27 | 61 | 1 | 80 | 162 | 0 | 0 | 0 |
62 | 1 | 242 | 0 | 0 | 0 | 0 | |
63 | 1 | 80 | 162 | 0 | 0 | 0 | |
64 | 1 | 80 | 162 | 0 | 0 | 0 | |
65 | 1 | 242 | 0 | 0 | 0 | 0 | |
66 | 1 | 80 | 162 | 0 | 0 | 0 | |
Elementary abelian group:E243 | 67 | 1 | 242 | 0 | 0 | 0 | 0 |
Here is the GAP code to generate these order statistics:[SHOW MORE]
Here are the order statistics (cumulative version):
Group | Second part of GAP ID | 1st roots | 3rd roots | 9th roots | 27th roots | 81st roots | 243th roots |
---|---|---|---|---|---|---|---|
1 | 1 | 3 | 9 | 27 | 81 | 243 | |
2 | 1 | 27 | 243 | 243 | 243 | 243 | |
3 | 1 | 135 | 243 | 243 | 243 | 243 | |
4 | 1 | 81 | 243 | 243 | 243 | 243 | |
5 | 1 | 27 | 243 | 243 | 243 | 243 | |
6 | 1 | 81 | 243 | 243 | 243 | 243 | |
7 | 1 | 27 | 243 | 243 | 243 | 243 | |
8 | 1 | 27 | 243 | 243 | 243 | 243 | |
9 | 1 | 27 | 243 | 243 | 243 | 243 | |
Direct product of Z27 and Z9 | 10 | 1 | 9 | 81 | 243 | 243 | 243 |
11 | 1 | 9 | 81 | 243 | 243 | 243 | |
12 | 1 | 27 | 81 | 243 | 243 | 243 | |
13 | 1 | 81 | 243 | 243 | 243 | 243 | |
14 | 1 | 27 | 243 | 243 | 243 | 243 | |
15 | 1 | 27 | 243 | 243 | 243 | 243 | |
16 | 1 | 27 | 81 | 243 | 243 | 243 | |
17 | 1 | 81 | 243 | 243 | 243 | 243 | |
18 | 1 | 27 | 243 | 243 | 243 | 243 | |
19 | 1 | 27 | 81 | 243 | 243 | 243 | |
20 | 1 | 27 | 81 | 243 | 243 | 243 | |
21 | 1 | 9 | 81 | 243 | 243 | 243 | |
Sylow subgroup of holomorph of Z27 | 22 | 1 | 9 | 81 | 243 | 243 | 243 |
Direct product of Z81 and Z3 | 23 | 1 | 9 | 27 | 81 | 243 | 243 |
24 | 1 | 9 | 27 | 81 | 243 | 243 | |
25 | 1 | 63 | 243 | 243 | 243 | 243 | |
26 | 1 | 171 | 243 | 243 | 243 | 243 | |
27 | 1 | 9 | 243 | 243 | 243 | 243 | |
28 | 1 | 117 | 243 | 243 | 243 | 243 | |
29 | 1 | 9 | 243 | 243 | 243 | 243 | |
30 | 1 | 63 | 243 | 243 | 243 | 243 | |
Direct product of Z9 and Z9 and Z3 | 31 | 1 | 27 | 243 | 243 | 243 | 243 |
32 | 1 | 81 | 243 | 243 | 243 | 243 | |
33 | 1 | 27 | 243 | 243 | 243 | 243 | |
34 | 1 | 27 | 243 | 243 | 243 | 243 | |
35 | 1 | 81 | 243 | 243 | 243 | 243 | |
36 | 1 | 27 | 243 | 243 | 243 | 243 | |
37 | 1 | 243 | 243 | 243 | 243 | 243 | |
38 | 1 | 81 | 243 | 243 | 243 | 243 | |
39 | 1 | 81 | 243 | 243 | 243 | 243 | |
40 | 1 | 81 | 243 | 243 | 243 | 243 | |
41 | 1 | 27 | 243 | 243 | 243 | 243 | |
42 | 1 | 27 | 243 | 243 | 243 | 243 | |
43 | 1 | 27 | 243 | 243 | 243 | 243 | |
44 | 1 | 27 | 243 | 243 | 243 | 243 | |
45 | 1 | 27 | 243 | 243 | 243 | 243 | |
46 | 1 | 27 | 243 | 243 | 243 | 243 | |
47 | 1 | 27 | 243 | 243 | 243 | 243 | |
Direct product of Z27 and E9 | 48 | 1 | 27 | 81 | 243 | 243 | 243 |
49 | 1 | 27 | 81 | 243 | 243 | 243 | |
50 | 1 | 27 | 81 | 243 | 243 | 243 | |
51 | 1 | 135 | 243 | 243 | 243 | 243 | |
52 | 1 | 81 | 243 | 243 | 243 | 243 | |
53 | 1 | 189 | 243 | 243 | 243 | 243 | |
54 | 1 | 27 | 243 | 243 | 243 | 243 | |
55 | 1 | 81 | 243 | 243 | 243 | 243 | |
56 | 1 | 135 | 243 | 243 | 243 | 243 | |
57 | 1 | 81 | 243 | 243 | 243 | 243 | |
58 | 1 | 189 | 243 | 243 | 243 | 243 | |
59 | 1 | 27 | 243 | 243 | 243 | 243 | |
60 | 1 | 81 | 243 | 243 | 243 | 243 | |
Direct product of Z9 and E27 | 61 | 1 | 81 | 243 | 243 | 243 | 243 |
62 | 1 | 243 | 243 | 243 | 243 | 243 | |
63 | 1 | 81 | 243 | 243 | 243 | 243 | |
64 | 1 | 81 | 243 | 243 | 243 | 243 | |
65 | 1 | 243 | 243 | 243 | 243 | 243 | |
66 | 1 | 81 | 243 | 243 | 243 | 243 | |
Elementary abelian group:E243 | 67 | 1 | 243 | 243 | 243 | 243 | 243 |
Here is the GAP code to generate these order statistics:[SHOW MORE]