Element structure of groups of order 243: Difference between revisions

From Groupprops
No edit summary
No edit summary
Line 52: Line 52:
| ||21 || 1 || 8 || 72 || 162 || 0 || 0
| ||21 || 1 || 8 || 72 || 162 || 0 || 0
|-
|-
| ||22 || 1 || 8 || 72 || 162 || 0 || 0
| [[Sylow subgroup of holomorph of Z27]] ||22 || 1 || 8 || 72 || 162 || 0 || 0
|-
|-
| [[Direct product of Z81 and Z3]] ||23 || 1 || 8 || 18 || 54 || 162 || 0
| [[Direct product of Z81 and Z3]] ||23 || 1 || 8 || 18 || 54 || 162 || 0
Line 216: Line 216:
| ||21 || 1 || 9 || 81 || 243 || 243 || 243
| ||21 || 1 || 9 || 81 || 243 || 243 || 243
|-
|-
| ||22 || 1 || 9 || 81 || 243 || 243 || 243
| [[Sylow subgroup of holomorph of Z27]] ||22 || 1 || 9 || 81 || 243 || 243 || 243
|-
|-
| [[Direct product of Z81 and Z3]] ||23 || 1 || 9 || 27 || 81 || 243 || 243
| [[Direct product of Z81 and Z3]] ||23 || 1 || 9 || 27 || 81 || 243 || 243

Revision as of 18:40, 2 July 2010

Order statistics

FACTS TO CHECK AGAINST:

ORDER STATISTICS (cf. order statistics, order statistics-equivalent finite groups): number of nth roots is a multiple of n | Finite abelian groups with the same order statistics are isomorphic | Lazard Lie group has the same order statistics as the additive group of its Lazard Lie ring | Frobenius conjecture on nth roots

1-ISOMORPHISM (cf. 1-isomorphic groups): Lazard Lie group is 1-isomorphic to the additive group of its Lazard Lie ring | order statistics-equivalent not implies 1-isomorphic

Order statistics raw data

Here are the order statistics (non-cumulative version):

Group Second part of GAP ID Order 1 Order 3 Order 9 Order 27 Order 81 Order 243
Cyclic group:Z243 1 1 2 6 18 54 162
2 1 26 216 0 0 0
3 1 134 108 0 0 0
4 1 80 162 0 0 0
5 1 26 216 0 0 0
6 1 80 162 0 0 0
7 1 26 216 0 0 0
8 1 26 216 0 0 0
9 1 26 216 0 0 0
Direct product of Z27 and Z9 10 1 8 72 162 0 0
11 1 8 72 162 0 0
12 1 26 54 162 0 0
13 1 80 162 0 0 0
14 1 26 216 0 0 0
15 1 26 216 0 0 0
16 1 26 54 162 0 0
17 1 80 162 0 0 0
18 1 26 216 0 0 0
19 1 26 54 162 0 0
20 1 26 54 162 0 0
21 1 8 72 162 0 0
Sylow subgroup of holomorph of Z27 22 1 8 72 162 0 0
Direct product of Z81 and Z3 23 1 8 18 54 162 0
24 1 8 18 54 162 0
25 1 62 180 0 0 0
26 1 170 72 0 0 0
27 1 8 234 0 0 0
28 1 116 126 0 0 0
29 1 8 234 0 0 0
30 1 62 180 0 0 0
Direct product of Z9 and Z9 and Z3 31 1 26 216 0 0 0
32 1 80 162 0 0 0
33 1 26 216 0 0 0
34 1 26 216 0 0 0
35 1 80 162 0 0 0
36 1 26 216 0 0 0
37 1 242 0 0 0 0
38 1 80 162 0 0 0
39 1 80 162 0 0 0
40 1 80 162 0 0 0
41 1 26 216 0 0 0
42 1 26 216 0 0 0
43 1 26 216 0 0 0
44 1 26 216 0 0 0
45 1 26 216 0 0 0
46 1 26 216 0 0 0
47 1 26 216 0 0 0
Direct product of Z27 and E9 48 1 26 54 162 0 0
49 1 26 54 162 0 0
50 1 26 54 162 0 0
51 1 134 108 0 0 0
52 1 80 162 0 0 0
53 1 188 54 0 0 0
54 1 26 216 0 0 0
55 1 80 162 0 0 0
56 1 134 108 0 0 0
57 1 80 162 0 0 0
58 1 188 54 0 0 0
59 1 26 216 0 0 0
60 1 80 162 0 0 0
Direct product of Z9 and E27 61 1 80 162 0 0 0
62 1 242 0 0 0 0
63 1 80 162 0 0 0
64 1 80 162 0 0 0
65 1 242 0 0 0 0
66 1 80 162 0 0 0
Elementary abelian group:E243 67 1 242 0 0 0 0

Here is the GAP code to generate these order statistics:[SHOW MORE]

Here are the order statistics (cumulative version):

Group Second part of GAP ID 1st roots 3rd roots 9th roots 27th roots 81st roots 243th roots
1 1 3 9 27 81 243
2 1 27 243 243 243 243
3 1 135 243 243 243 243
4 1 81 243 243 243 243
5 1 27 243 243 243 243
6 1 81 243 243 243 243
7 1 27 243 243 243 243
8 1 27 243 243 243 243
9 1 27 243 243 243 243
Direct product of Z27 and Z9 10 1 9 81 243 243 243
11 1 9 81 243 243 243
12 1 27 81 243 243 243
13 1 81 243 243 243 243
14 1 27 243 243 243 243
15 1 27 243 243 243 243
16 1 27 81 243 243 243
17 1 81 243 243 243 243
18 1 27 243 243 243 243
19 1 27 81 243 243 243
20 1 27 81 243 243 243
21 1 9 81 243 243 243
Sylow subgroup of holomorph of Z27 22 1 9 81 243 243 243
Direct product of Z81 and Z3 23 1 9 27 81 243 243
24 1 9 27 81 243 243
25 1 63 243 243 243 243
26 1 171 243 243 243 243
27 1 9 243 243 243 243
28 1 117 243 243 243 243
29 1 9 243 243 243 243
30 1 63 243 243 243 243
Direct product of Z9 and Z9 and Z3 31 1 27 243 243 243 243
32 1 81 243 243 243 243
33 1 27 243 243 243 243
34 1 27 243 243 243 243
35 1 81 243 243 243 243
36 1 27 243 243 243 243
37 1 243 243 243 243 243
38 1 81 243 243 243 243
39 1 81 243 243 243 243
40 1 81 243 243 243 243
41 1 27 243 243 243 243
42 1 27 243 243 243 243
43 1 27 243 243 243 243
44 1 27 243 243 243 243
45 1 27 243 243 243 243
46 1 27 243 243 243 243
47 1 27 243 243 243 243
Direct product of Z27 and E9 48 1 27 81 243 243 243
49 1 27 81 243 243 243
50 1 27 81 243 243 243
51 1 135 243 243 243 243
52 1 81 243 243 243 243
53 1 189 243 243 243 243
54 1 27 243 243 243 243
55 1 81 243 243 243 243
56 1 135 243 243 243 243
57 1 81 243 243 243 243
58 1 189 243 243 243 243
59 1 27 243 243 243 243
60 1 81 243 243 243 243
Direct product of Z9 and E27 61 1 81 243 243 243 243
62 1 243 243 243 243 243
63 1 81 243 243 243 243
64 1 81 243 243 243 243
65 1 243 243 243 243 243
66 1 81 243 243 243 243
Elementary abelian group:E243 67 1 243 243 243 243 243

Here is the GAP code to generate these order statistics:[SHOW MORE]