Element structure of groups of order 243: Difference between revisions
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
===Order statistics raw data=== | ===Order statistics raw data=== | ||
Here are the order statistics (non-cumulative version): | |||
{| class="sortable" border="1" | {| class="sortable" border="1" | ||
Line 166: | Line 168: | ||
[ [ 1, 80, 162, 0, 0, 0 ], 61 ], [ [ 1, 242, 0, 0, 0, 0 ], 62 ], [ [ 1, 80, 162, 0, 0, 0 ], 63 ], [ [ 1, 80, 162, 0, 0, 0 ], 64 ], | [ [ 1, 80, 162, 0, 0, 0 ], 61 ], [ [ 1, 242, 0, 0, 0, 0 ], 62 ], [ [ 1, 80, 162, 0, 0, 0 ], 63 ], [ [ 1, 80, 162, 0, 0, 0 ], 64 ], | ||
[ [ 1, 242, 0, 0, 0, 0 ], 65 ], [ [ 1, 80, 162, 0, 0, 0 ], 66 ], [ [ 1, 242, 0, 0, 0, 0 ], 67 ] ]</pre></toggledisplay> | [ [ 1, 242, 0, 0, 0, 0 ], 65 ], [ [ 1, 80, 162, 0, 0, 0 ], 66 ], [ [ 1, 242, 0, 0, 0, 0 ], 67 ] ]</pre></toggledisplay> | ||
Here are the order statistics (cumulative version): | |||
{| class="sortable" border="1" | |||
! Group !! Second part of GAP ID !! 1st roots !! 3rd roots !! 9th roots !! 27th roots !! 81st roots !! 243th roots | |||
|- | |||
| || 1 || 1 || 3 || 8 || 27 || 81 || 243 | |||
|- | |||
| || 2 || 1 || 27 || 243 || 243 || 243 || 243 | |||
|- | |||
| || 3 || 1 || 135 || 243 || 243 || 243 || 243 | |||
|- | |||
| || 4 || 1 || 81 || 243 || 243 || 243 || 243 | |||
|- | |||
| || 5 || 1 || 27 || 243 || 243 || 243 || 243 | |||
|- | |||
| || 6 || 1 || 81 || 243 || 243 || 243 || 243 | |||
|- | |||
| || 7 || 1 || 27 || 243 || 243 || 243 || 243 | |||
|- | |||
| || 8 || 1 || 27 || 243 || 243 || 243 || 243 | |||
|- | |||
| || 9 || 1 || 27 || 243 || 243 || 243 || 243 | |||
|- | |||
| ||10 || 1 || 9 || 81 || 243 || 243 || 243 | |||
|- | |||
| ||11 || 1 || 9 || 81 || 243 || 243 || 243 | |||
|- | |||
| ||12 || 1 || 27 || 81 || 243 || 243 || 243 | |||
|- | |||
| ||13 || 1 || 81 || 243|| 243 || 243 || 243 | |||
|- | |||
| ||14 || 1 || 27 || 243|| 243 || 243 || 243 | |||
|- | |||
| ||15 || 1 || 27 || 243|| 243 || 243 || 243 | |||
|- | |||
| ||16 || 1 || 27 || 81 || 243 || 243 || 243 | |||
|- | |||
| ||17 || 1 || 81 || 243 || 243 || 243 || 243 | |||
|- | |||
| ||18 || 1 || 27 || 243 || 243 || 243 || 243 | |||
|- | |||
| ||19 || 1 || 27 || 81 || 243 || 243 || 243 | |||
|- | |||
| ||20 || 1 || 27 || 81 || 243 || 243 || 243 | |||
|- | |||
| ||21 || 1 || 9 || 81 || 243 || 243 || 243 | |||
|- | |||
| ||22 || 1 || 9 || 81 || 243 || 243 || 243 | |||
|- | |||
| ||23 || 1 || 9 || 27 || 81 || 243 || 243 | |||
|- | |||
| ||24 || 1 || 9 || 27 || 81 || 243 || 243 | |||
|- | |||
| ||25 || 1 || 63 || 243||243|| 243 || 243 | |||
|- | |||
| ||26 || 1 || 171||243 ||243|| 243 || 243 | |||
|- | |||
| ||27 || 1 || 9 || 243 || 243 || 243||243 | |||
|- | |||
| ||28 || 1 ||117|| 243 || 243 || 243||243 | |||
|- | |||
| ||29 || 1 || 9 || 243 || 243 || 243||243 | |||
|- | |||
| ||30 || 1 || 63 || 243|| 243 || 243||243 | |||
|} | |||
|} | |||
Here is the GAP code to generate these order statistics:<toggledisplay> | |||
<tt>List([1..67],i ->[OrderStatisticsCumulative(SmallGroup(243,i)),i]);</tt> | |||
after first defining the [[GAP:OrderStatisticsCumulative|OrderStatisticsCumulative]] function (follow link for GAP code for function definition). The output is: | |||
<pre>[ [ [ 1, 3, 9, 27, 81, 243 ], 1 ], [ [ 1, 27, 243, 243, 243, 243 ], 2 ], [ [ 1, 135, 243, 243, 243, 243 ], 3 ], [ [ 1, 81, 243, 243, 243, 243 ], 4 ], | |||
[ [ 1, 27, 243, 243, 243, 243 ], 5 ], [ [ 1, 81, 243, 243, 243, 243 ], 6 ], [ [ 1, 27, 243, 243, 243, 243 ], 7 ], [ [ 1, 27, 243, 243, 243, 243 ], 8 ], | |||
[ [ 1, 27, 243, 243, 243, 243 ], 9 ], [ [ 1, 9, 81, 243, 243, 243 ], 10 ], [ [ 1, 9, 81, 243, 243, 243 ], 11 ], [ [ 1, 27, 81, 243, 243, 243 ], 12 ], | |||
[ [ 1, 81, 243, 243, 243, 243 ], 13 ], [ [ 1, 27, 243, 243, 243, 243 ], 14 ], [ [ 1, 27, 243, 243, 243, 243 ], 15 ], | |||
[ [ 1, 27, 81, 243, 243, 243 ], 16 ], [ [ 1, 81, 243, 243, 243, 243 ], 17 ], [ [ 1, 27, 243, 243, 243, 243 ], 18 ], [ [ 1, 27, 81, 243, 243, 243 ], 19 ] | |||
, [ [ 1, 27, 81, 243, 243, 243 ], 20 ], [ [ 1, 9, 81, 243, 243, 243 ], 21 ], [ [ 1, 9, 81, 243, 243, 243 ], 22 ], [ [ 1, 9, 27, 81, 243, 243 ], 23 ], | |||
[ [ 1, 9, 27, 81, 243, 243 ], 24 ], [ [ 1, 63, 243, 243, 243, 243 ], 25 ], [ [ 1, 171, 243, 243, 243, 243 ], 26 ], [ [ 1, 9, 243, 243, 243, 243 ], 27 ], | |||
[ [ 1, 117, 243, 243, 243, 243 ], 28 ], [ [ 1, 9, 243, 243, 243, 243 ], 29 ], [ [ 1, 63, 243, 243, 243, 243 ], 30 ], | |||
[ [ 1, 27, 243, 243, 243, 243 ], 31 ], [ [ 1, 81, 243, 243, 243, 243 ], 32 ], [ [ 1, 27, 243, 243, 243, 243 ], 33 ], | |||
[ [ 1, 27, 243, 243, 243, 243 ], 34 ], [ [ 1, 81, 243, 243, 243, 243 ], 35 ], [ [ 1, 27, 243, 243, 243, 243 ], 36 ], | |||
[ [ 1, 243, 243, 243, 243, 243 ], 37 ], [ [ 1, 81, 243, 243, 243, 243 ], 38 ], [ [ 1, 81, 243, 243, 243, 243 ], 39 ], | |||
[ [ 1, 81, 243, 243, 243, 243 ], 40 ], [ [ 1, 27, 243, 243, 243, 243 ], 41 ], [ [ 1, 27, 243, 243, 243, 243 ], 42 ], | |||
[ [ 1, 27, 243, 243, 243, 243 ], 43 ], [ [ 1, 27, 243, 243, 243, 243 ], 44 ], [ [ 1, 27, 243, 243, 243, 243 ], 45 ], | |||
[ [ 1, 27, 243, 243, 243, 243 ], 46 ], [ [ 1, 27, 243, 243, 243, 243 ], 47 ], [ [ 1, 27, 81, 243, 243, 243 ], 48 ], [ [ 1, 27, 81, 243, 243, 243 ], 49 ] | |||
, [ [ 1, 27, 81, 243, 243, 243 ], 50 ], [ [ 1, 135, 243, 243, 243, 243 ], 51 ], [ [ 1, 81, 243, 243, 243, 243 ], 52 ], | |||
[ [ 1, 189, 243, 243, 243, 243 ], 53 ], [ [ 1, 27, 243, 243, 243, 243 ], 54 ], [ [ 1, 81, 243, 243, 243, 243 ], 55 ], | |||
[ [ 1, 135, 243, 243, 243, 243 ], 56 ], [ [ 1, 81, 243, 243, 243, 243 ], 57 ], [ [ 1, 189, 243, 243, 243, 243 ], 58 ], | |||
[ [ 1, 27, 243, 243, 243, 243 ], 59 ], [ [ 1, 81, 243, 243, 243, 243 ], 60 ], [ [ 1, 81, 243, 243, 243, 243 ], 61 ], | |||
[ [ 1, 243, 243, 243, 243, 243 ], 62 ], [ [ 1, 81, 243, 243, 243, 243 ], 63 ], [ [ 1, 81, 243, 243, 243, 243 ], 64 ], | |||
[ [ 1, 243, 243, 243, 243, 243 ], 65 ], [ [ 1, 81, 243, 243, 243, 243 ], 66 ], [ [ 1, 243, 243, 243, 243, 243 ], 67 ] ]</pre></toggledisplay> |
Revision as of 18:04, 2 July 2010
Order statistics
FACTS TO CHECK AGAINST:
ORDER STATISTICS (cf. order statistics, order statistics-equivalent finite groups): number of nth roots is a multiple of n | Finite abelian groups with the same order statistics are isomorphic | Lazard Lie group has the same order statistics as the additive group of its Lazard Lie ring | Frobenius conjecture on nth roots
1-ISOMORPHISM (cf. 1-isomorphic groups): Lazard Lie group is 1-isomorphic to the additive group of its Lazard Lie ring | order statistics-equivalent not implies 1-isomorphic
Order statistics raw data
Here are the order statistics (non-cumulative version):
Group | Second part of GAP ID | Order 1 | Order 3 | Order 9 | Order 27 | Order 81 | Order 243 |
---|---|---|---|---|---|---|---|
Cyclic group:Z243 | 1 | 1 | 2 | 6 | 18 | 54 | 162 |
2 | 1 | 26 | 216 | 0 | 0 | 0 | |
3 | 1 | 134 | 108 | 0 | 0 | 0 | |
4 | 1 | 80 | 162 | 0 | 0 | 0 | |
5 | 1 | 26 | 216 | 0 | 0 | 0 | |
6 | 1 | 80 | 162 | 0 | 0 | 0 | |
7 | 1 | 26 | 216 | 0 | 0 | 0 | |
8 | 1 | 26 | 216 | 0 | 0 | 0 | |
9 | 1 | 26 | 216 | 0 | 0 | 0 | |
Direct product of Z27 and Z9 | 10 | 1 | 8 | 72 | 162 | 0 | 0 |
11 | 1 | 8 | 72 | 162 | 0 | 0 | |
12 | 1 | 26 | 54 | 162 | 0 | 0 | |
13 | 1 | 80 | 162 | 0 | 0 | 0 | |
14 | 1 | 26 | 216 | 0 | 0 | 0 | |
15 | 1 | 26 | 216 | 0 | 0 | 0 | |
16 | 1 | 26 | 54 | 162 | 0 | 0 | |
17 | 1 | 80 | 162 | 0 | 0 | 0 | |
18 | 1 | 26 | 216 | 0 | 0 | 0 | |
19 | 1 | 26 | 54 | 162 | 0 | 0 | |
20 | 1 | 26 | 54 | 162 | 0 | 0 | |
21 | 1 | 8 | 72 | 162 | 0 | 0 | |
22 | 1 | 8 | 72 | 162 | 0 | 0 | |
Direct product of Z81 and Z3 | 23 | 1 | 8 | 18 | 54 | 162 | 0 |
24 | 1 | 8 | 18 | 54 | 162 | 0 | |
25 | 1 | 62 | 180 | 0 | 0 | 0 | |
26 | 1 | 170 | 72 | 0 | 0 | 0 | |
27 | 1 | 8 | 234 | 0 | 0 | 0 | |
28 | 1 | 116 | 126 | 0 | 0 | 0 | |
29 | 1 | 8 | 234 | 0 | 0 | 0 | |
30 | 1 | 62 | 180 | 0 | 0 | 0 | |
Direct product of Z9 and Z9 and Z3 | 31 | 1 | 26 | 216 | 0 | 0 | 0 |
32 | 1 | 80 | 162 | 0 | 0 | 0 | |
33 | 1 | 26 | 216 | 0 | 0 | 0 | |
34 | 1 | 26 | 216 | 0 | 0 | 0 | |
35 | 1 | 80 | 162 | 0 | 0 | 0 | |
36 | 1 | 26 | 216 | 0 | 0 | 0 | |
37 | 1 | 242 | 0 | 0 | 0 | 0 | |
38 | 1 | 80 | 162 | 0 | 0 | 0 | |
39 | 1 | 80 | 162 | 0 | 0 | 0 | |
40 | 1 | 80 | 162 | 0 | 0 | 0 | |
41 | 1 | 26 | 216 | 0 | 0 | 0 | |
42 | 1 | 26 | 216 | 0 | 0 | 0 | |
43 | 1 | 26 | 216 | 0 | 0 | 0 | |
44 | 1 | 26 | 216 | 0 | 0 | 0 | |
45 | 1 | 26 | 216 | 0 | 0 | 0 | |
46 | 1 | 26 | 216 | 0 | 0 | 0 | |
47 | 1 | 26 | 216 | 0 | 0 | 0 | |
Direct product of Z27 and E9 | 48 | 1 | 26 | 54 | 162 | 0 | 0 |
49 | 1 | 26 | 54 | 162 | 0 | 0 | |
50 | 1 | 26 | 54 | 162 | 0 | 0 | |
51 | 1 | 134 | 108 | 0 | 0 | 0 | |
52 | 1 | 80 | 162 | 0 | 0 | 0 | |
53 | 1 | 188 | 54 | 0 | 0 | 0 | |
54 | 1 | 26 | 216 | 0 | 0 | 0 | |
55 | 1 | 80 | 162 | 0 | 0 | 0 | |
56 | 1 | 134 | 108 | 0 | 0 | 0 | |
57 | 1 | 80 | 162 | 0 | 0 | 0 | |
58 | 1 | 188 | 54 | 0 | 0 | 0 | |
59 | 1 | 26 | 216 | 0 | 0 | 0 | |
60 | 1 | 80 | 162 | 0 | 0 | 0 | |
Direct product of Z9 and E27 | 61 | 1 | 80 | 162 | 0 | 0 | 0 |
62 | 1 | 242 | 0 | 0 | 0 | 0 | |
63 | 1 | 80 | 162 | 0 | 0 | 0 | |
64 | 1 | 80 | 162 | 0 | 0 | 0 | |
65 | 1 | 242 | 0 | 0 | 0 | 0 | |
66 | 1 | 80 | 162 | 0 | 0 | 0 | |
Elementary abelian group:E243 | 67 | 1 | 242 | 0 | 0 | 0 | 0 |
Here is the GAP code to generate these order statistics:[SHOW MORE]
Here are the order statistics (cumulative version):
Group | Second part of GAP ID | 1st roots | 3rd roots | 9th roots | 27th roots | 81st roots | 243th roots |
---|---|---|---|---|---|---|---|
1 | 1 | 3 | 8 | 27 | 81 | 243 | |
2 | 1 | 27 | 243 | 243 | 243 | 243 | |
3 | 1 | 135 | 243 | 243 | 243 | 243 | |
4 | 1 | 81 | 243 | 243 | 243 | 243 | |
5 | 1 | 27 | 243 | 243 | 243 | 243 | |
6 | 1 | 81 | 243 | 243 | 243 | 243 | |
7 | 1 | 27 | 243 | 243 | 243 | 243 | |
8 | 1 | 27 | 243 | 243 | 243 | 243 | |
9 | 1 | 27 | 243 | 243 | 243 | 243 | |
10 | 1 | 9 | 81 | 243 | 243 | 243 | |
11 | 1 | 9 | 81 | 243 | 243 | 243 | |
12 | 1 | 27 | 81 | 243 | 243 | 243 | |
13 | 1 | 81 | 243 | 243 | 243 | 243 | |
14 | 1 | 27 | 243 | 243 | 243 | 243 | |
15 | 1 | 27 | 243 | 243 | 243 | 243 | |
16 | 1 | 27 | 81 | 243 | 243 | 243 | |
17 | 1 | 81 | 243 | 243 | 243 | 243 | |
18 | 1 | 27 | 243 | 243 | 243 | 243 | |
19 | 1 | 27 | 81 | 243 | 243 | 243 | |
20 | 1 | 27 | 81 | 243 | 243 | 243 | |
21 | 1 | 9 | 81 | 243 | 243 | 243 | |
22 | 1 | 9 | 81 | 243 | 243 | 243 | |
23 | 1 | 9 | 27 | 81 | 243 | 243 | |
24 | 1 | 9 | 27 | 81 | 243 | 243 | |
25 | 1 | 63 | 243 | 243 | 243 | 243 | |
26 | 1 | 171 | 243 | 243 | 243 | 243 | |
27 | 1 | 9 | 243 | 243 | 243 | 243 | |
28 | 1 | 117 | 243 | 243 | 243 | 243 | |
29 | 1 | 9 | 243 | 243 | 243 | 243 | |
30 | 1 | 63 | 243 | 243 | 243 | 243 |
|}
Here is the GAP code to generate these order statistics:[SHOW MORE]