Alternating group:A6: Difference between revisions
(New page: {{particular group}} {{group of order|360}} {{smallest|simple non-Abelian group that is not a minimal simple group}} {{smallest|simple non-Abelian group that is neither [[compl...) |
No edit summary |
||
| Line 10: | Line 10: | ||
* It is the group of [[even permutation]]s (viz., the {{alternating group}}) on six elements. | * It is the group of [[even permutation]]s (viz., the {{alternating group}}) on six elements. | ||
* It is the {{projective special linear group}} <math>PSL(2,9)</math>. | * It is the {{projective special linear group}} <math>PSL(2,9)</math>. | ||
==Arithmetic functions== | |||
{| class="wikitable" border="1" | |||
! Function !! Value !! Explanation | |||
|- | |||
| [[Order of a group|order]] || [[arithmetic function value::order of a group;360|360]] || <math>6!/2 = 360</math>. | |||
|- | |||
| [[Exponent of a group|exponent]] || [[arithmetic function value::exponent of a group;60|60]] || Elements of order <math>3,4,5</math>. | |||
|- | |||
| [[derived length]] || -- || not a solvable group. | |||
|- | |||
| [[nilpotency class]] || -- || not a nilpotent group. | |||
|- | |||
| [[Frattini length]] || [[arithmetic function value::Frattini length;1|1]] || [[Frattini-free group]]: intersection of maximal subgroups is trivial. | |||
|- | |||
| [[minimum size of generating set]] || [[arithmetic function value::minimum size of generating set;2|2]] || | |||
|- | |||
| [[Subgroup rank of a group|subgroup rank]] || [[arithmetic function value::subgroup rank of a group;2|2]] || -- | |||
|- | |||
| [[max-length of a group|max-length]] || [[arithmetic function value::max-length of a group;5|5]] || -- | |||
|} | |||
==Group properties== | ==Group properties== | ||
{ | {| class="wikitable" border="1" | ||
!Property !! Satisfied !! Explanation !! Comment | |||
|- | |||
|[[Dissatisfies property::Abelian group]] || No || <math>(1,2,3)</math>, <math>(1,2,3,4,5)</math> don't commute || <math>A_n</math> is non-abelian, <math>n \ge 4</math>. | |||
|- | |||
|[[Dissatisfies property::Nilpotent group]] || No || [[Centerless group|Centerless]]: The [[center]] is trivial || <math>A_n</math> is non-nilpotent, <math>n \ge 4</math>. | |||
|- | |||
|[[Dissatisfies property::Metacyclic group]] || No || Simple and non-abelian || <math>A_n</math> is not metacyclic, <math>n \ge 4</math>. | |||
|- | |||
|[[Dissatisfies property::Supersolvable group]] || No || Simple and non-abelian || <math>A_n</math> is not supersolvable, <math>n \ge 4</math>. | |||
|- | |||
|[[Dissatisfies property::Solvable group]] || No || || <math>A_n</math> is not solvable, <math>n \ge 5</math>. | |||
|- | |||
|[[Satisfies property::Simple non-abelian group]] || Yes || [[alternating groups are simple]], [[projective special linear group is simple]] || | |||
|- | |||
|[[Satisfies property::T-group]] || Yes || Simple and non-abelian || | |||
|} | |||
Revision as of 00:56, 17 August 2009
This article is about a particular group, i.e., a group unique upto isomorphism. View specific information (such as linear representation theory, subgroup structure) about this group
View a complete list of particular groups (this is a very huge list!)[SHOW MORE]
This particular group is a finite group of order: 360 This particular group is the smallest (in terms of order): simple non-Abelian group that is not a minimal simple group This particular group is the smallest (in terms of order): simple non-Abelian group that is neither complete nor maximal in its automorphism group
Definition
The alternating group is defined in the following equivalent ways:
- It is the group of even permutations (viz., the alternating group) on six elements.
- It is the projective special linear group .
Arithmetic functions
| Function | Value | Explanation |
|---|---|---|
| order | 360 | . |
| exponent | 60 | Elements of order . |
| derived length | -- | not a solvable group. |
| nilpotency class | -- | not a nilpotent group. |
| Frattini length | 1 | Frattini-free group: intersection of maximal subgroups is trivial. |
| minimum size of generating set | 2 | |
| subgroup rank | 2 | -- |
| max-length | 5 | -- |
Group properties
| Property | Satisfied | Explanation | Comment |
|---|---|---|---|
| Abelian group | No | , don't commute | is non-abelian, . |
| Nilpotent group | No | Centerless: The center is trivial | is non-nilpotent, . |
| Metacyclic group | No | Simple and non-abelian | is not metacyclic, . |
| Supersolvable group | No | Simple and non-abelian | is not supersolvable, . |
| Solvable group | No | is not solvable, . | |
| Simple non-abelian group | Yes | alternating groups are simple, projective special linear group is simple | |
| T-group | Yes | Simple and non-abelian |