Alternating group:A6: Difference between revisions

From Groupprops
(New page: {{particular group}} {{group of order|360}} {{smallest|simple non-Abelian group that is not a minimal simple group}} {{smallest|simple non-Abelian group that is neither [[compl...)
 
No edit summary
Line 10: Line 10:
* It is the group of [[even permutation]]s (viz., the {{alternating group}}) on six elements.
* It is the group of [[even permutation]]s (viz., the {{alternating group}}) on six elements.
* It is the {{projective special linear group}} <math>PSL(2,9)</math>.
* It is the {{projective special linear group}} <math>PSL(2,9)</math>.
==Arithmetic functions==
{| class="wikitable" border="1"
! Function !! Value !! Explanation
|-
| [[Order of a group|order]] || [[arithmetic function value::order of a group;360|360]] || <math>6!/2 = 360</math>.
|-
| [[Exponent of a group|exponent]] || [[arithmetic function value::exponent of a group;60|60]] || Elements of order <math>3,4,5</math>.
|-
| [[derived length]] || -- || not a solvable group.
|-
| [[nilpotency class]] || -- || not a nilpotent group.
|-
| [[Frattini length]] || [[arithmetic function value::Frattini length;1|1]] || [[Frattini-free group]]: intersection of maximal subgroups is trivial.
|-
| [[minimum size of generating set]] || [[arithmetic function value::minimum size of generating set;2|2]] ||
|-
| [[Subgroup rank of a group|subgroup rank]] || [[arithmetic function value::subgroup rank of a group;2|2]] || --
|-
| [[max-length of a group|max-length]] || [[arithmetic function value::max-length of a group;5|5]] || --
|}


==Group properties==
==Group properties==


{{simple}}
{| class="wikitable" border="1"
 
!Property !! Satisfied !! Explanation !! Comment
This group is simple. {{proofat|[[Alternating groups are simple]], [[projective special linear group is simple]]}}
|-
|[[Dissatisfies property::Abelian group]] || No || <math>(1,2,3)</math>, <math>(1,2,3,4,5)</math> don't commute || <math>A_n</math> is non-abelian, <math>n \ge 4</math>.
|-
|[[Dissatisfies property::Nilpotent group]] || No || [[Centerless group|Centerless]]: The [[center]] is trivial || <math>A_n</math> is non-nilpotent, <math>n \ge 4</math>.
|-
|[[Dissatisfies property::Metacyclic group]] || No || Simple and non-abelian || <math>A_n</math> is not metacyclic, <math>n \ge 4</math>.
|-
|[[Dissatisfies property::Supersolvable group]] || No || Simple and non-abelian || <math>A_n</math> is not supersolvable, <math>n \ge 4</math>.
|-
|[[Dissatisfies property::Solvable group]] || No ||  || <math>A_n</math> is not solvable, <math>n \ge 5</math>.
|-
|[[Satisfies property::Simple non-abelian group]] || Yes || [[alternating groups are simple]], [[projective special linear group is simple]] ||
|-
|[[Satisfies property::T-group]] || Yes || Simple and non-abelian ||
|}

Revision as of 00:56, 17 August 2009

This article is about a particular group, i.e., a group unique upto isomorphism. View specific information (such as linear representation theory, subgroup structure) about this group
View a complete list of particular groups (this is a very huge list!)[SHOW MORE]

This particular group is a finite group of order: 360 This particular group is the smallest (in terms of order): simple non-Abelian group that is not a minimal simple group This particular group is the smallest (in terms of order): simple non-Abelian group that is neither complete nor maximal in its automorphism group

Definition

The alternating group is defined in the following equivalent ways:

Arithmetic functions

Function Value Explanation
order 360 .
exponent 60 Elements of order .
derived length -- not a solvable group.
nilpotency class -- not a nilpotent group.
Frattini length 1 Frattini-free group: intersection of maximal subgroups is trivial.
minimum size of generating set 2
subgroup rank 2 --
max-length 5 --

Group properties

Property Satisfied Explanation Comment
Abelian group No , don't commute is non-abelian, .
Nilpotent group No Centerless: The center is trivial is non-nilpotent, .
Metacyclic group No Simple and non-abelian is not metacyclic, .
Supersolvable group No Simple and non-abelian is not supersolvable, .
Solvable group No is not solvable, .
Simple non-abelian group Yes alternating groups are simple, projective special linear group is simple
T-group Yes Simple and non-abelian