User:CJKG/Eigenbox: Difference between revisions

From Groupprops
(Created page with "a) <math>\mathcal{M}</math> is called '''right-equiponent magma''' or '''R-equiponent magma''' if and only if <math>\exists M, \circ</math> with <math>((M; \circ) = \mathcal{...")
 
No edit summary
Line 1: Line 1:
a) <math>\mathcal{M}</math> is called '''right-equiponent magma''' or '''R-equiponent magma''' if and only if  
a) <math>\mathcal{M}</math> is called '''right-equiponent magma''' or '''R-equiponent magma''' if and only if  
<math>\exists M, \circ</math> with <math>((M; \circ) = \mathcal{M} \wedge \circ: M \times M \to M)</math> such that
<math>\exists M, \circ</math> with <math>((M; \circ) = \mathcal{M} \wedge \circ: M \times M \to M)</math> such that
<math>\forall a \in M \exists b \in M \forall c \in M  (c \circ a) \circ c = b</math> (''R-equiponency law'').
<math>\forall a \in M \exists b \in M \forall c \in M  (c \circ a) \circ c = b</math> (''R-equiponency law'').


b) <math>\mathcal{M}</math> is called '''left-equiponent magma''' or '''L-equiponent magma''' if and only if  
b) <math>\mathcal{M}</math> is called '''left-equiponent magma''' or '''L-equiponent magma''' if and only if  
<math>\exists M, \circ</math> with <math>((M; \circ) = \mathcal{M} \wedge \circ: M \times M \to M)</math> such that
<math>\exists M, \circ</math> with <math>((M; \circ) = \mathcal{M} \wedge \circ: M \times M \to M)</math> such that
<math>\forall a \in M \exists b \in M \forall c \in M  c \circ (a \circ c) = b</math> (''L-equiponency law'').
<math>\forall a \in M \exists b \in M \forall c \in M  c \circ (a \circ c) = b</math> (''L-equiponency law'').


Remark: <math>M = \emptyset</math> is allowed.
Remark: <math>M = \emptyset</math> is allowed.
c) <math>\mathcal{M}</math> is called '''column-preserving''' if and only if <math>\mathcal{M}</math> is a magma and
<math>\exists M, \circ</math> with <math>(M; \circ) = \mathcal{M}</math> such that
<math>\forall a, b \in M  b \circ (b \circ a) = a</math> (''column-preserving law'').
d) <math>\mathcal{M}</math> is called '''row-preserving''' if and only if <math>\mathcal{M}</math> is a magma and
<math>\exists M, \circ</math> with <math>(M; \circ) = \mathcal{M}</math> such that
<math>\forall a, b \in M  (a \circ b) \circ b = a</math> (''row-preserving law'').
e) A magma <math>(M;\circ)</math> is called '''static''' <math>: \leftrightarrow</math>
<math>\forall a \in M \exists b \in M \forall c \in M  a \circ (b \circ c) = c</math> (''staticity law'').

Revision as of 12:35, 19 July 2014

a) is called right-equiponent magma or R-equiponent magma if and only if with such that

(R-equiponency law).

b) is called left-equiponent magma or L-equiponent magma if and only if with such that

(L-equiponency law).

Remark: is allowed.

c) is called column-preserving if and only if is a magma and with such that

(column-preserving law).

d) is called row-preserving if and only if is a magma and with such that

(row-preserving law).

e) A magma is called static

(staticity law).