Dihedral group: Difference between revisions

From Groupprops
No edit summary
No edit summary
Line 5: Line 5:
{{natural number-parametrized group family}}
{{natural number-parametrized group family}}


{{particularcases|[[:Category:Dihedral groups]]}}
==Definition==
==Definition==



Revision as of 23:54, 2 January 2008

WARNING: POTENTIAL TERMINOLOGICAL CONFUSION: Please don't confuse this with dicyclic group (also called binary dihedral group)

This article defines a group property: a property that can be evaluated to true/false for any given group, invariant under isomorphism
View a complete list of group properties
VIEW RELATED: Group property implications | Group property non-implications |Group metaproperty satisfactions | Group metaproperty dissatisfactions | Group property satisfactions | Group property dissatisfactions

This is a family of groups parametrized by the natural numbers, viz, for each natural number, there is a unique group (upto isomorphism) in the family corresponding to the natural number. The natural number is termed the parameter for the group family

This article is about a general term. A list of important particular cases (instances) is available at Category:Dihedral groups

Definition

The dihedral group with parameter , denoted sometimes as and sometimes as is defined in the following equivalent ways:

  • It is the group of symmetries of a regular -gon in the plane, viz the plane isometries that preserves the set of points of the regular -gon.