Element structure of special linear group:SL(2,5): Difference between revisions
| Line 30: | Line 30: | ||
|- | |- | ||
| Total || NA || NA || NA || NA || 9 || 120 || 72 || 32 || 48 || NA | | Total || NA || NA || NA || NA || 9 || 120 || 72 || 32 || 48 || NA | ||
|} | |||
{| class="sortable" border="1" | |||
! Nature of conjugacy class !! Eigenvalue pairs of all conjugacy classes !! Characteristic polynomials of all conjugacy classes !! Minimal polynomials of all conjugacy classes !! Size of conjugacy class (generic odd <math>q</math>) !! Size of conjugacy class (<math>q = 5</math>) !! Number of such conjugacy classes (generic odd <math>q</math>) !! Number of such conjugacy classes (<math>q = 5</math>) !! Total number of elements (generic odd <math>q</math>) !! Total number of elements (<math>q = 5</math>) !! Representative matrices (one per conjugacy class) | |||
|- | |||
| Scalar || <math>\{ 1, 1 \}</math> or <math>\{ -1,-1\}</math> || <math>x^2 - 2x + 1</math> or <math>x^2 + 2x + 1</math> || <math>x - 1</math> or <math>x + 1</math> || 1 || 1 || 2 || 2 || 2 || 2 || <math>\begin{pmatrix} 1 & 0 \\ 0 & 1 \\\end{pmatrix}</math> and <math>\begin{pmatrix} -1 & 0 \\ 0 & -1\\\end{pmatrix}</math> | |||
|- | |||
| Not diagonal, Jordan block of size two || <math>\{ 1, 1 \}</math> or <math>\{ -1,-1\}</math> || <math>x^2 - 2x + 1</math> or <math>x^2 + 2x + 1</math> || <math>x^2 - 2x + 1</math> or <math>x^2 + 2x + 1</math> || <math>(q^2 - 1)/2</math> || 12 || 4 || 4 || <math>2(q^2 - 1)</math> || 48 || <toggledisplay><math>\begin{pmatrix} 1 & 1 \\ 0 & 1 \\\end{pmatrix}</math>, <math>\begin{pmatrix} 1 & 2 \\ 0 & 1 \\\end{pmatrix}</math>, <math>\begin{pmatrix} -1 & 1 \\ 0 & -1 \\\end{pmatrix}</math>, <math>\begin{pmatrix} -1 & 2 \\ 0 & -1 \\\end{pmatrix}</math></toggledisplay> | |||
|- | |||
| Diagonalizable over [[field:F25]], not over [[field:F5]]. Must necessarily have no repeated eigenvalues. || <math>\{ 2 + \sqrt{3}, 2 - \sqrt{3} \}</math> and <math>\{ -2 + \sqrt{3}, -2 - \sqrt{3} \}</math>, where <math>\sqrt{3}</math> is interpreted a an element of [[field:F25]] that squares to 3 || <math>x^2 - x + 1</math>, <math>x^2 + x + 1</math> || <math>x^2 - x + 1</math>, <math>x^2 + x + 1</math> || <math>q(q - 1)</math> || 20 || <math>(q - 1)/2</math> || 2 || <math>q(q - 1)^2/2</math> || 40 || <math>\begin{pmatrix}0 & -1\\ 1 & 1\\\end{pmatrix}</math>, <math>\begin{pmatrix}0 & -1\\ 1 & -1\\\end{pmatrix}</math> | |||
|- | |||
| Diagonalizable over [[field:F5]] with ''distinct'' diagonal entries || <math>\{ 2,3 \}</math> || <math>x^2 + 1</math> || <math>x^2 + 1</math> || <math>q(q+1)</math> || 30 || <math>(q - 3)/2</math> || 1 || <math>q(q+1)(q-3)/2</math> ||30 || <math>\begin{pmatrix} 2 & 0 \\ 0 & 3 \\\end{pmatrix}</math> | |||
|- | |||
| Total || NA || NA || NA || NA || NA || <math>q + 4</math> || 9 || <math>q^3 - q</math> || 120 || NA | |||
|} | |} | ||
Revision as of 00:21, 19 February 2012
This article gives specific information, namely, element structure, about a particular group, namely: special linear group:SL(2,5).
View element structure of particular groups | View other specific information about special linear group:SL(2,5)
This article gives detailed information about the element structure of special linear group:SL(2,5), which is a group of order 120.
See also element structure of special linear group of degree two.
Conjugacy class structure
Conjugacy classes
PLACEHOLDER FOR INFORMATION TO BE FILLED IN: [SHOW MORE]
Relationship with conjugacy class structure for an arbitrary special linear group of degree two
Further information: element structure of special linear group of degree two
| Nature of conjugacy class | Eigenvalue pairs of all conjugacy classes | Characteristic polynomials of all conjugacy classes | Minimal polynomials of all conjugacy classes | Size of conjugacy class | Number of such conjugacy classes | Total number of elements | Semisimple? | Diagonalizable over ? | Splits in relative to ? | Representative matrices (one per conjugacy class) |
|---|---|---|---|---|---|---|---|---|---|---|
| Scalar | or | or | or | 1 | 2 | 2 | Yes | Yes | No | and |
| Not diagonal, Jordan block of size two | or | or | or | 12 | 4 | 48 | No | No | Yes | , , , |
| Diagonalizable over field:F25, not over field:F5. Must necessarily have no repeated eigenvalues. | pair of square roots of in field:F25, pair of square roots of in field:F25 | , | , | 20 | 2 | 40 | Yes | No | No | , |
| Diagonalizable over field:F5 with distinct diagonal entries | 30 | 1 | 30 | Yes | Yes | No | ||||
| Total | NA | NA | NA | NA | 9 | 120 | 72 | 32 | 48 | NA |
| Nature of conjugacy class | Eigenvalue pairs of all conjugacy classes | Characteristic polynomials of all conjugacy classes | Minimal polynomials of all conjugacy classes | Size of conjugacy class (generic odd ) | Size of conjugacy class () | Number of such conjugacy classes (generic odd ) | Number of such conjugacy classes () | Total number of elements (generic odd ) | Total number of elements () | Representative matrices (one per conjugacy class) |
|---|---|---|---|---|---|---|---|---|---|---|
| Scalar | or | or | or | 1 | 1 | 2 | 2 | 2 | 2 | and |
| Not diagonal, Jordan block of size two | or | or | or | 12 | 4 | 4 | 48 | [SHOW MORE] | ||
| Diagonalizable over field:F25, not over field:F5. Must necessarily have no repeated eigenvalues. | and , where is interpreted a an element of field:F25 that squares to 3 | , | , | 20 | 2 | 40 | , | |||
| Diagonalizable over field:F5 with distinct diagonal entries | 30 | 1 | 30 | |||||||
| Total | NA | NA | NA | NA | NA | 9 | 120 | NA |