Element structure of groups of order 243: Difference between revisions
No edit summary |
No edit summary |
||
Line 142: | Line 142: | ||
| [[Elementary abelian group:E243]] || 1 || 242 || 0 || 0 || 0 || 0 | | [[Elementary abelian group:E243]] || 1 || 242 || 0 || 0 || 0 || 0 | ||
|} | |} | ||
| | |||
Here is the GAP code to generate these order statistics:<toggledisplay> | |||
<tt>List([1..67],i ->[OrderStatistics(SmallGroup(243,i)),i]);</tt> | |||
after first defining the [[GAP:OrderStatistics|OrderStatistics]] function (follow link for GAP code for function definition). The output is: | |||
<pre>[ [ [ 1, 2, 6, 18, 54, 162 ], 1 ], [ [ 1, 26, 216, 0, 0, 0 ], 2 ], [ [ 1, 134, 108, 0, 0, 0 ], 3 ], [ [ 1, 80, 162, 0, 0, 0 ], 4 ], | |||
[ [ 1, 26, 216, 0, 0, 0 ], 5 ], [ [ 1, 80, 162, 0, 0, 0 ], 6 ], [ [ 1, 26, 216, 0, 0, 0 ], 7 ], [ [ 1, 26, 216, 0, 0, 0 ], 8 ], | |||
[ [ 1, 26, 216, 0, 0, 0 ], 9 ], [ [ 1, 8, 72, 162, 0, 0 ], 10 ], [ [ 1, 8, 72, 162, 0, 0 ], 11 ], [ [ 1, 26, 54, 162, 0, 0 ], 12 ], | |||
[ [ 1, 80, 162, 0, 0, 0 ], 13 ], [ [ 1, 26, 216, 0, 0, 0 ], 14 ], [ [ 1, 26, 216, 0, 0, 0 ], 15 ], [ [ 1, 26, 54, 162, 0, 0 ], 16 ], | |||
[ [ 1, 80, 162, 0, 0, 0 ], 17 ], [ [ 1, 26, 216, 0, 0, 0 ], 18 ], [ [ 1, 26, 54, 162, 0, 0 ], 19 ], [ [ 1, 26, 54, 162, 0, 0 ], 20 ], | |||
[ [ 1, 8, 72, 162, 0, 0 ], 21 ], [ [ 1, 8, 72, 162, 0, 0 ], 22 ], [ [ 1, 8, 18, 54, 162, 0 ], 23 ], [ [ 1, 8, 18, 54, 162, 0 ], 24 ], | |||
[ [ 1, 62, 180, 0, 0, 0 ], 25 ], [ [ 1, 170, 72, 0, 0, 0 ], 26 ], [ [ 1, 8, 234, 0, 0, 0 ], 27 ], [ [ 1, 116, 126, 0, 0, 0 ], 28 ], | |||
[ [ 1, 8, 234, 0, 0, 0 ], 29 ], [ [ 1, 62, 180, 0, 0, 0 ], 30 ], [ [ 1, 26, 216, 0, 0, 0 ], 31 ], [ [ 1, 80, 162, 0, 0, 0 ], 32 ], | |||
[ [ 1, 26, 216, 0, 0, 0 ], 33 ], [ [ 1, 26, 216, 0, 0, 0 ], 34 ], [ [ 1, 80, 162, 0, 0, 0 ], 35 ], [ [ 1, 26, 216, 0, 0, 0 ], 36 ], | |||
[ [ 1, 242, 0, 0, 0, 0 ], 37 ], [ [ 1, 80, 162, 0, 0, 0 ], 38 ], [ [ 1, 80, 162, 0, 0, 0 ], 39 ], [ [ 1, 80, 162, 0, 0, 0 ], 40 ], | |||
[ [ 1, 26, 216, 0, 0, 0 ], 41 ], [ [ 1, 26, 216, 0, 0, 0 ], 42 ], [ [ 1, 26, 216, 0, 0, 0 ], 43 ], [ [ 1, 26, 216, 0, 0, 0 ], 44 ], | |||
[ [ 1, 26, 216, 0, 0, 0 ], 45 ], [ [ 1, 26, 216, 0, 0, 0 ], 46 ], [ [ 1, 26, 216, 0, 0, 0 ], 47 ], [ [ 1, 26, 54, 162, 0, 0 ], 48 ], | |||
[ [ 1, 26, 54, 162, 0, 0 ], 49 ], [ [ 1, 26, 54, 162, 0, 0 ], 50 ], [ [ 1, 134, 108, 0, 0, 0 ], 51 ], [ [ 1, 80, 162, 0, 0, 0 ], 52 ], | |||
[ [ 1, 188, 54, 0, 0, 0 ], 53 ], [ [ 1, 26, 216, 0, 0, 0 ], 54 ], [ [ 1, 80, 162, 0, 0, 0 ], 55 ], [ [ 1, 134, 108, 0, 0, 0 ], 56 ], | |||
[ [ 1, 80, 162, 0, 0, 0 ], 57 ], [ [ 1, 188, 54, 0, 0, 0 ], 58 ], [ [ 1, 26, 216, 0, 0, 0 ], 59 ], [ [ 1, 80, 162, 0, 0, 0 ], 60 ], | |||
[ [ 1, 80, 162, 0, 0, 0 ], 61 ], [ [ 1, 242, 0, 0, 0, 0 ], 62 ], [ [ 1, 80, 162, 0, 0, 0 ], 63 ], [ [ 1, 80, 162, 0, 0, 0 ], 64 ], | |||
[ [ 1, 242, 0, 0, 0, 0 ], 65 ], [ [ 1, 80, 162, 0, 0, 0 ], 66 ], [ [ 1, 242, 0, 0, 0, 0 ], 67 ] ]</pre></toggledisplay> |
Revision as of 01:58, 2 July 2010
Order statistics
FACTS TO CHECK AGAINST:
ORDER STATISTICS (cf. order statistics, order statistics-equivalent finite groups): number of nth roots is a multiple of n | Finite abelian groups with the same order statistics are isomorphic | Lazard Lie group has the same order statistics as the additive group of its Lazard Lie ring | Frobenius conjecture on nth roots
1-ISOMORPHISM (cf. 1-isomorphic groups): Lazard Lie group is 1-isomorphic to the additive group of its Lazard Lie ring | order statistics-equivalent not implies 1-isomorphic
Order statistics raw data
Group | Second part of GAP ID | Order 1 | Order 3 | Order 9 | Order 27 | Order 81 | Order 243 |
---|---|---|---|---|---|---|---|
Cyclic group:Z243 | 1 | 1 | 2 | 6 | 18 | 54 | 162 |
2 | 1 | 26 | 216 | 0 | 0 | 0 | |
3 | 1 | 134 | 108 | 0 | 0 | 0 | |
4 | 1 | 80 | 162 | 0 | 0 | 0 | |
5 | 1 | 26 | 216 | 0 | 0 | 0 | |
6 | 1 | 80 | 162 | 0 | 0 | 0 | |
7 | 1 | 26 | 216 | 0 | 0 | 0 | |
8 | 1 | 26 | 216 | 0 | 0 | 0 | |
9 | 1 | 26 | 216 | 0 | 0 | 0 | |
Direct product of Z27 and Z9 | 10 | 1 | 8 | 72 | 162 | 0 | 0 |
11 | 1 | 8 | 72 | 162 | 0 | 0 | |
12 | 1 | 26 | 54 | 162 | 0 | 0 | |
13 | 1 | 80 | 162 | 0 | 0 | 0 | |
14 | 1 | 26 | 216 | 0 | 0 | 0 | |
15 | 1 | 26 | 216 | 0 | 0 | 0 | |
16 | 1 | 26 | 54 | 162 | 0 | 0 | |
17 | 1 | 80 | 162 | 0 | 0 | 0 | |
18 | 1 | 26 | 216 | 0 | 0 | 0 | |
19 | 1 | 26 | 54 | 162 | 0 | 0 | |
20 | 1 | 26 | 54 | 162 | 0 | 0 | |
21 | 1 | 8 | 72 | 162 | 0 | 0 | |
22 | 1 | 8 | 72 | 162 | 0 | 0 | |
Direct product of Z81 and Z3 | 23 | 1 | 8 | 18 | 54 | 162 | 0 |
24 | 1 | 8 | 18 | 54 | 162 | 0 | |
25 | 1 | 62 | 180 | 0 | 0 | 0 | |
26 | 1 | 170 | 72 | 0 | 0 | 0 | |
27 | 1 | 8 | 234 | 0 | 0 | 0 | |
28 | 1 | 116 | 126 | 0 | 0 | 0 | |
29 | 1 | 8 | 234 | 0 | 0 | 0 | |
30 | 1 | 62 | 180 | 0 | 0 | 0 | |
Direct product of Z9 and Z9 and Z3 | 31 | 1 | 26 | 216 | 0 | 0 | 0 |
32 | 1 | 80 | 162 | 0 | 0 | 0 | |
33 | 1 | 26 | 216 | 0 | 0 | 0 | |
34 | 1 | 26 | 216 | 0 | 0 | 0 | |
35 | 1 | 80 | 162 | 0 | 0 | 0 | |
36 | 1 | 26 | 216 | 0 | 0 | 0 | |
37 | 1 | 242 | 0 | 0 | 0 | 0 | |
38 | 1 | 80 | 162 | 0 | 0 | 0 | |
39 | 1 | 80 | 162 | 0 | 0 | 0 | |
40 | 1 | 80 | 162 | 0 | 0 | 0 | |
41 | 1 | 26 | 216 | 0 | 0 | 0 | |
42 | 1 | 26 | 216 | 0 | 0 | 0 | |
43 | 1 | 26 | 216 | 0 | 0 | 0 | |
44 | 1 | 26 | 216 | 0 | 0 | 0 | |
45 | 1 | 26 | 216 | 0 | 0 | 0 | |
46 | 1 | 26 | 216 | 0 | 0 | 0 | |
47 | 1 | 26 | 216 | 0 | 0 | 0 | |
Direct product of Z27 and E9 | 48 | 1 | 26 | 54 | 162 | 0 | 0 |
49 | 1 | 26 | 54 | 162 | 0 | 0 | |
50 | 1 | 26 | 54 | 162 | 0 | 0 | |
51 | 1 | 134 | 108 | 0 | 0 | 0 | |
52 | 1 | 80 | 162 | 0 | 0 | 0 | |
53 | 1 | 188 | 54 | 0 | 0 | 0 | |
54 | 1 | 26 | 216 | 0 | 0 | 0 | |
55 | 1 | 80 | 162 | 0 | 0 | 0 | |
56 | 1 | 134 | 108 | 0 | 0 | 0 | |
57 | 1 | 80 | 162 | 0 | 0 | 0 | |
58 | 1 | 188 | 54 | 0 | 0 | 0 | |
59 | 1 | 26 | 216 | 0 | 0 | 0 | |
60 | 1 | 80 | 162 | 0 | 0 | 0 | |
Direct product of Z9 and E27 | 61 | 1 | 80 | 162 | 0 | 0 | 0 |
62 | 1 | 242 | 0 | 0 | 0 | 0 | |
63 | 1 | 80 | 162 | 0 | 0 | 0 | |
64 | 1 | 80 | 162 | 0 | 0 | 0 | |
65 | 1 | 242 | 0 | 0 | 0 | 0 | |
66 | 1 | 80 | 162 | 0 | 0 | 0 | |
Elementary abelian group:E243 | 1 | 242 | 0 | 0 | 0 | 0 |
Here is the GAP code to generate these order statistics:[SHOW MORE]