User:CJKG/Eigenbox: Difference between revisions
(Created page with "a) <math>\mathcal{M}</math> is called '''right-equiponent magma''' or '''R-equiponent magma''' if and only if <math>\exists M, \circ</math> with <math>((M; \circ) = \mathcal{...") |
No edit summary |
||
| (14 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
a) <math>\mathcal{M}</math> is | '''(1 a)''' <math>\mathcal{M}</math> is termed '''''right-equiponent magma''''' or '''''R-equiponent magma''''' if and only if | ||
<math>\exists M, \circ</math> with <math>((M; \circ) = \mathcal{M} \wedge \circ: M \times M \to M)</math> such that | <math>\exists M, \circ</math> with <math>((M; \circ) = \mathcal{M} \; \wedge \; \circ: M \times M \to M)</math> such that | ||
: <math>\forall a, b \in M \; (b \circ a) \circ b = (a \circ a) \circ a</math> (''right-equiponency law''). | |||
<math>\forall a \in M \ | |||
Remark: <math>M = \emptyset</math> is allowed. | Equivalent | ||
'''(1 b)''' <math>\exists M, \circ</math> with <math>((M; \circ) = \mathcal{M} \; \wedge \; \circ: M \times M \to M)</math> such that | |||
: <math>\forall a, b, c \in M \; (a \circ c) \circ a = (b \circ c) \circ b</math> | |||
Equivalent | |||
'''(1 c)''' <math>\exists M, \circ</math> with <math>((M; \circ) = \mathcal{M} \; \wedge \; \circ: M \times M \to M)</math> such that | |||
: <math>\forall a \in M \, \exists b \in M \, \forall c \in M \; (c \circ a) \circ c = b</math> | |||
'''(2 a)''' <math>\mathcal{M}</math> is termed '''''left-equiponent magma''''' or '''''L-equiponent magma''''' if and only if | |||
<math>\exists M, \circ</math> with <math>((M; \circ) = \mathcal{M} \; \wedge \; \circ: M \times M \to M)</math> such that | |||
: <math>\forall a, b \in M \; b \circ (a \circ b) = a \circ (a \circ a)</math> (''left-equiponency law''). | |||
Equivalent | |||
'''(2 b)''' <math>\exists M, \circ</math> with <math>((M; \circ) = \mathcal{M} \; \wedge \; \circ: M \times M \to M)</math> such that | |||
: <math>\forall a, b c \in M \; a \circ (c \circ a) = b \circ (c \circ b)</math> | |||
Equivalent | |||
'''(2 c)''' <math>\exists M, \circ</math> with <math>((M; \circ) = \mathcal{M} \; \wedge \; \circ: M \times M \to M)</math> such that | |||
: <math>\forall a \in M \, \exists b \in M \, \forall c \in M \; c \circ (a \circ c) = b</math> | |||
Remark to 1 and 2: <math>M = \emptyset</math> is allowed. | |||
'''(3)''' <math>\mathcal{M}</math> is termed '''''column-preserving magma''''' if and only if <math>\mathcal{M}</math> is a magma and | |||
<math>\exists M, \circ</math> with <math>(M; \circ) = \mathcal{M}</math> such that | |||
: <math>\forall a, b \in M \; b \circ (b \circ a) = a</math> (''column-preserving law''). | |||
'''(4)''' <math>\mathcal{M}</math> is termed '''''row-preserving magma''''' if and only if <math>\mathcal{M}</math> is a magma and | |||
<math>\exists M, \circ</math> with <math>(M; \circ) = \mathcal{M}</math> such that | |||
: <math>\forall a, b \in M \; (a \circ b) \circ b = a</math> (''row-preserving law''). | |||
'''(5)''' A magma <math>(M;\circ)</math> is termed | |||
: '''(5 a)''' '''''right static''''' <math>: \Leftrightarrow \forall a \in M \, \exists b \in M \, \forall c \in M \; (c \circ b) \circ a = c</math> (''right-staticity law''). | |||
: '''(5 b)''' '''''left static''''' <math>: \Leftrightarrow \forall a \in M \, \exists b \in M \, \forall c \in M \; a \circ (b \circ c) = c</math> (''left-staticity law''). | |||
: '''(5 c)''' '''''RC static''''' <math>: \Leftrightarrow \forall a \in M \, \exists b \in M \, \forall c \in M \; (b \circ c) \circ a = c</math>. | |||
: '''(5 d)''' '''''LC static''''' <math>: \Leftrightarrow \forall a \in M \, \exists b \in M \, \forall c \in M \; a \circ (c \circ b) = c</math>. | |||
: '''(5 e)''' '''''RT static''''' <math>: \Leftrightarrow \forall a \in M \, \exists b \in M \, \forall c \in M \; (c \circ a) \circ b = c</math>. | |||
: '''(5 f)''' '''''LT static''''' <math>: \Leftrightarrow \forall a \in M \, \exists b \in M \, \forall c \in M \; b \circ (a \circ c) = c</math>. | |||
: '''(5 g)''' '''''RCT static''''' <math>: \Leftrightarrow \forall a \in M \, \exists b \in M \, \forall c \in M \; (a \circ c) \circ b = c</math>. | |||
: '''(5 h)''' '''''LCT static''''' <math>: \Leftrightarrow \forall a \in M \, \exists b \in M \, \forall c \in M \; b \circ (c \circ a) = c</math>. | |||
'''(6 a)''' An '''''REV-quasigroup''''' is a right-equiponent and column-preserving magma. | |||
'''(6 b)''' An '''''LEH-quasigroup''''' is a left-equiponent ans row-preserving magma. | |||
'''(6 c)''' An '''''AS-quasigroup''''' is an abelian and (right or II or III or left or V or VI or VII or VIII) static magma. | |||
'''Reference:''' [http://www.interlinguistik-gil.de/wb/media/beihefte/21/beiheft21-killing_guenkel.pdf ''Creation of technical terms in algebra and especially in koniology''] | |||
Latest revision as of 12:27, 10 April 2016
(1 a) is termed right-equiponent magma or R-equiponent magma if and only if with such that
- (right-equiponency law).
Equivalent
(1 b) with such that
Equivalent
(1 c) with such that
(2 a) is termed left-equiponent magma or L-equiponent magma if and only if
with such that
- (left-equiponency law).
Equivalent
(2 b) with such that
Equivalent
(2 c) with such that
Remark to 1 and 2: is allowed.
(3) is termed column-preserving magma if and only if is a magma and
with such that
- (column-preserving law).
(4) is termed row-preserving magma if and only if is a magma and with such that
- (row-preserving law).
(5) A magma is termed
- (5 a) right static (right-staticity law).
- (5 b) left static (left-staticity law).
- (5 c) RC static .
- (5 d) LC static .
- (5 e) RT static .
- (5 f) LT static .
- (5 g) RCT static .
- (5 h) LCT static .
(6 a) An REV-quasigroup is a right-equiponent and column-preserving magma.
(6 b) An LEH-quasigroup is a left-equiponent ans row-preserving magma.
(6 c) An AS-quasigroup is an abelian and (right or II or III or left or V or VI or VII or VIII) static magma.
Reference: Creation of technical terms in algebra and especially in koniology