User:CJKG/Eigenbox: Difference between revisions

From Groupprops
(Created page with "a) <math>\mathcal{M}</math> is called '''right-equiponent magma''' or '''R-equiponent magma''' if and only if <math>\exists M, \circ</math> with <math>((M; \circ) = \mathcal{...")
 
No edit summary
 
(14 intermediate revisions by the same user not shown)
Line 1: Line 1:
a) <math>\mathcal{M}</math> is called '''right-equiponent magma''' or '''R-equiponent magma''' if and only if  
'''(1 a)''' <math>\mathcal{M}</math> is termed '''''right-equiponent magma''''' or '''''R-equiponent magma''''' if and only if  
<math>\exists M, \circ</math> with <math>((M; \circ) = \mathcal{M} \wedge \circ: M \times M \to M)</math> such that
<math>\exists M, \circ</math> with <math>((M; \circ) = \mathcal{M} \; \wedge \; \circ: M \times M \to M)</math> such that
<math>\forall a \in M \exists b \in M \forall c \in M  (c \circ a) \circ c = b</math> (''R-equiponency law'').


b) <math>\mathcal{M}</math> is called '''left-equiponent magma''' or '''L-equiponent magma''' if and only if
: <math>\forall a, b \in M \; (b \circ a) \circ b = (a \circ a) \circ a</math> (''right-equiponency law'').
<math>\exists M, \circ</math> with <math>((M; \circ) = \mathcal{M} \wedge \circ: M \times M \to M)</math> such that
<math>\forall a \in M \exists b \in M \forall c \in M  c \circ (a \circ c) = b</math> (''L-equiponency law'').


Remark: <math>M = \emptyset</math> is allowed.
Equivalent
 
'''(1 b)''' <math>\exists M, \circ</math> with <math>((M; \circ) = \mathcal{M} \; \wedge \; \circ: M \times M \to M)</math> such that
 
: <math>\forall a, b, c \in M \; (a \circ c) \circ a = (b \circ c) \circ b</math>
 
Equivalent
 
'''(1 c)''' <math>\exists M, \circ</math> with <math>((M; \circ) = \mathcal{M} \; \wedge \; \circ: M \times M \to M)</math> such that
 
: <math>\forall a \in M \, \exists b \in M \, \forall c \in M \; (c \circ a) \circ c = b</math>
 
 
'''(2 a)''' <math>\mathcal{M}</math> is termed '''''left-equiponent magma''''' or '''''L-equiponent magma''''' if and only if
<math>\exists M, \circ</math> with <math>((M; \circ) = \mathcal{M} \; \wedge \; \circ: M \times M \to M)</math> such that
 
: <math>\forall a, b \in M \; b \circ (a \circ b) = a \circ (a \circ a)</math> (''left-equiponency law'').
 
Equivalent
 
'''(2 b)''' <math>\exists M, \circ</math> with <math>((M; \circ) = \mathcal{M} \; \wedge \; \circ: M \times M \to M)</math> such that
 
: <math>\forall a, b c \in M \; a \circ (c \circ a) = b \circ (c \circ b)</math>
 
Equivalent
 
'''(2 c)''' <math>\exists M, \circ</math> with <math>((M; \circ) = \mathcal{M} \; \wedge \; \circ: M \times M \to M)</math> such that
 
: <math>\forall a \in M \, \exists b \in M \, \forall c \in M \; c \circ (a \circ c) = b</math>
 
 
Remark to 1 and 2: <math>M = \emptyset</math> is allowed.
 
 
'''(3)''' <math>\mathcal{M}</math> is termed '''''column-preserving magma''''' if and only if <math>\mathcal{M}</math> is a magma and
<math>\exists M, \circ</math> with <math>(M; \circ) = \mathcal{M}</math> such that
 
: <math>\forall a, b \in M \; b \circ (b \circ a) = a</math> (''column-preserving law'').
 
'''(4)''' <math>\mathcal{M}</math> is termed '''''row-preserving magma''''' if and only if <math>\mathcal{M}</math> is a magma and
<math>\exists M, \circ</math> with <math>(M; \circ) = \mathcal{M}</math> such that
 
: <math>\forall a, b \in M \; (a \circ b) \circ b = a</math> (''row-preserving law'').
 
 
'''(5)''' A magma <math>(M;\circ)</math> is termed
: '''(5 a)'''  '''''right static''''' <math>: \Leftrightarrow \forall a \in M \, \exists b \in M \, \forall c \in M \; (c \circ b) \circ a = c</math> (''right-staticity law'').
: '''(5 b)'''  '''''left static''''' <math>: \Leftrightarrow \forall a \in M \, \exists b \in M \, \forall c \in M \; a \circ (b \circ c) = c</math> (''left-staticity law'').
: '''(5 c)'''  '''''RC static''''' <math>: \Leftrightarrow \forall a \in M \, \exists b \in M \, \forall c \in M \; (b \circ c) \circ a = c</math>.
: '''(5 d)'''  '''''LC static''''' <math>: \Leftrightarrow \forall a \in M \, \exists b \in M \, \forall c \in M \; a \circ (c \circ b) = c</math>.
: '''(5 e)'''  '''''RT static''''' <math>: \Leftrightarrow \forall a \in M \, \exists b \in M \, \forall c \in M \; (c \circ a) \circ b = c</math>.
: '''(5 f)'''  '''''LT static''''' <math>: \Leftrightarrow \forall a \in M \, \exists b \in M \, \forall c \in M \; b \circ (a \circ c) = c</math>.
: '''(5 g)'''  '''''RCT static''''' <math>: \Leftrightarrow \forall a \in M \, \exists b \in M \, \forall c \in M \; (a \circ c) \circ b = c</math>.
: '''(5 h)'''  '''''LCT static''''' <math>: \Leftrightarrow \forall a \in M \, \exists b \in M \, \forall c \in M \; b \circ (c \circ a) = c</math>.
 
 
'''(6 a)''' An '''''REV-quasigroup''''' is a right-equiponent and column-preserving magma.
 
'''(6 b)''' An '''''LEH-quasigroup''''' is a left-equiponent ans row-preserving magma.
 
'''(6 c)''' An '''''AS-quasigroup''''' is an abelian and (right or II or III or left or V or VI or VII or VIII) static magma.
 
 
'''Reference:''' [http://www.interlinguistik-gil.de/wb/media/beihefte/21/beiheft21-killing_guenkel.pdf ''Creation of technical terms in algebra and especially in koniology'']

Latest revision as of 12:27, 10 April 2016

(1 a) is termed right-equiponent magma or R-equiponent magma if and only if with such that

(right-equiponency law).

Equivalent

(1 b) with such that

Equivalent

(1 c) with such that


(2 a) is termed left-equiponent magma or L-equiponent magma if and only if with such that

(left-equiponency law).

Equivalent

(2 b) with such that

Equivalent

(2 c) with such that


Remark to 1 and 2: is allowed.


(3) is termed column-preserving magma if and only if is a magma and with such that

(column-preserving law).

(4) is termed row-preserving magma if and only if is a magma and with such that

(row-preserving law).


(5) A magma is termed

(5 a) right static (right-staticity law).
(5 b) left static (left-staticity law).
(5 c) RC static .
(5 d) LC static .
(5 e) RT static .
(5 f) LT static .
(5 g) RCT static .
(5 h) LCT static .


(6 a) An REV-quasigroup is a right-equiponent and column-preserving magma.

(6 b) An LEH-quasigroup is a left-equiponent ans row-preserving magma.

(6 c) An AS-quasigroup is an abelian and (right or II or III or left or V or VI or VII or VIII) static magma.


Reference: Creation of technical terms in algebra and especially in koniology