Generalized quaternion group: Difference between revisions
m (3 revisions) |
|||
| (5 intermediate revisions by the same user not shown) | |||
| Line 8: | Line 8: | ||
For the particular case <math>k=2</math>, we recover the [[quaternion group]]. | For the particular case <math>k=2</math>, we recover the [[quaternion group]]. | ||
The generalized quaternion group is generally only ever defined for <math>k \geq 2</math>. However, if we put <math>k=1</math> we retrieve the [[Klein four-group]]. | |||
==Group properties== | |||
{| class="wikitable" border="1" | |||
!Property !! Satisfied !! Explanation | |||
|- | |||
|[[Abelian group]] || No || | |||
|- | |||
|[[Nilpotent group]] || Yes. Nilpotency class <math>k</math> || | |||
|- | |||
|[[Solvable group]] || Yes || | |||
|- | |||
|[[Supersolvable group]] || Yes || | |||
|- | |||
|[[Metacyclic group]] || Yes || | |||
|- | |||
|[[Ambivalent group]] || Yes || | |||
|- | |||
|[[Rational group]] || Yes only for <math>k =2</math>, i.e., the [[quaternion group]] || | |||
|} | |||
==Examples== | |||
===Small values=== | |||
{| class="sortable" border="1" | |||
!<math>k</math> !! Group !! Order, <math>2^{k+1}</math> | |||
|- | |||
| 2 || [[quaternion group]] || 8 | |||
|- | |||
| 3 || [[generalized quaternion group:Q16]] || 16 | |||
|- | |||
| 4 || [[generalized quaternion group:Q32]] || 32 | |||
|- | |||
| 5 || [[generalized quaternion group:Q64]] || 64 | |||
|- | |||
| 6 || [[generalized quaternion group:Q128]] || 128 | |||
|- | |||
| 7 || [[generalized quaternion group:Q256]] || 256 | |||
|- | |||
| 8 || [[generalized quaternion group:Q512]] || 512 | |||
|- | |||
| 9 || [[generalized quaternion group:Q1024]] || 1024 | |||
|- | |||
| 10 || [[generalized quaternion group:Q2048]] || 2048 | |||
|} | |||
Latest revision as of 15:46, 15 December 2023
Definition
A generalized quaternion group is a group of order with generators and such that the group has the presentation:
Equivalently, it is the dicyclic group with parameter .
For the particular case , we recover the quaternion group.
The generalized quaternion group is generally only ever defined for . However, if we put we retrieve the Klein four-group.
Group properties
| Property | Satisfied | Explanation |
|---|---|---|
| Abelian group | No | |
| Nilpotent group | Yes. Nilpotency class | |
| Solvable group | Yes | |
| Supersolvable group | Yes | |
| Metacyclic group | Yes | |
| Ambivalent group | Yes | |
| Rational group | Yes only for , i.e., the quaternion group |
Examples
Small values
| Group | Order, | |
|---|---|---|
| 2 | quaternion group | 8 |
| 3 | generalized quaternion group:Q16 | 16 |
| 4 | generalized quaternion group:Q32 | 32 |
| 5 | generalized quaternion group:Q64 | 64 |
| 6 | generalized quaternion group:Q128 | 128 |
| 7 | generalized quaternion group:Q256 | 256 |
| 8 | generalized quaternion group:Q512 | 512 |
| 9 | generalized quaternion group:Q1024 | 1024 |
| 10 | generalized quaternion group:Q2048 | 2048 |