Generalized quaternion group: Difference between revisions

From Groupprops
m (3 revisions)
 
(5 intermediate revisions by the same user not shown)
Line 8: Line 8:


For the particular case <math>k=2</math>, we recover the [[quaternion group]].
For the particular case <math>k=2</math>, we recover the [[quaternion group]].
The generalized quaternion group is generally only ever defined for <math>k \geq 2</math>. However, if we put <math>k=1</math> we retrieve the [[Klein four-group]].
==Group properties==
{| class="wikitable" border="1"
!Property !! Satisfied !! Explanation
|-
|[[Abelian group]] || No ||
|-
|[[Nilpotent group]] || Yes. Nilpotency class <math>k</math> ||
|-
|[[Solvable group]] || Yes ||
|-
|[[Supersolvable group]] || Yes ||
|-
|[[Metacyclic group]] || Yes ||
|-
|[[Ambivalent group]] || Yes ||
|-
|[[Rational group]] || Yes only for <math>k =2</math>, i.e., the [[quaternion group]] ||
|}
==Examples==
===Small values===
{| class="sortable" border="1"
!<math>k</math> !! Group !! Order, <math>2^{k+1}</math>
|-
| 2 || [[quaternion group]] || 8
|-
| 3 || [[generalized quaternion group:Q16]] || 16
|-
| 4 || [[generalized quaternion group:Q32]] || 32
|-
| 5 || [[generalized quaternion group:Q64]] || 64
|-
| 6 || [[generalized quaternion group:Q128]] || 128
|-
| 7 || [[generalized quaternion group:Q256]] || 256
|-
| 8 || [[generalized quaternion group:Q512]] || 512
|-
| 9 || [[generalized quaternion group:Q1024]] || 1024
|-
| 10 || [[generalized quaternion group:Q2048]] || 2048
|}

Latest revision as of 15:46, 15 December 2023

Definition

A generalized quaternion group is a group of order with generators and such that the group has the presentation:

Equivalently, it is the dicyclic group with parameter .

For the particular case , we recover the quaternion group.

The generalized quaternion group is generally only ever defined for . However, if we put we retrieve the Klein four-group.

Group properties

Property Satisfied Explanation
Abelian group No
Nilpotent group Yes. Nilpotency class
Solvable group Yes
Supersolvable group Yes
Metacyclic group Yes
Ambivalent group Yes
Rational group Yes only for , i.e., the quaternion group

Examples

Small values

Group Order,
2 quaternion group 8
3 generalized quaternion group:Q16 16
4 generalized quaternion group:Q32 32
5 generalized quaternion group:Q64 64
6 generalized quaternion group:Q128 128
7 generalized quaternion group:Q256 256
8 generalized quaternion group:Q512 512
9 generalized quaternion group:Q1024 1024
10 generalized quaternion group:Q2048 2048