Sylow subgroups exist: Difference between revisions

From Groupprops
 
(9 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Page class::Fact| ]][[Difficulty level::3| ]]
==Statement==
==Statement==


Let <math>G</math> be a [[fact about::finite group]] and <math>p</math> be a [[prime number]]. Then, there exists a <math>p</math>-[[fact about::Sylow subgroup]] <math>P</math> of <math>G</math>: a subgroup whose order is a power of <math>p</math> and whose index is relatively prime to <math>p</math>.
Let <math>G</math> be a [[fact about::finite group;3| ]][[finite group]] and <math>p</math> be a [[prime number]]. Then, there exists a <math>p</math>-[[fact about::Sylow subgroup;1| ]][[Sylow subgroup]] <math>P</math> of <math>G</math>: a subgroup whose order is a power of <math>p</math> and whose index is relatively prime to <math>p</math>.


Note that when <math>p</math> does not divide the order of <math>G</math>, the <math>p</math>-Sylow subgroup is trivial, so the statement gives interesting information only when <math>p</math> divides the order of <math>G</math>.
Note that when <math>p</math> does not divide the order of <math>G</math>, the <math>p</math>-Sylow subgroup is trivial, so the statement gives interesting information only when <math>p</math> divides the order of <math>G</math>.
This statement is often viewed as a part of a more general statement called [[Sylow's theorem]].
This statement is often viewed as a part of a more general statement called [[Sylow's theorem]].


Line 23: Line 25:


* [[Hall subgroups need not exist]]: Given a set <math>\pi</math> of primes, there may not exist a <math>\pi</math>-Hall subgroup.
* [[Hall subgroups need not exist]]: Given a set <math>\pi</math> of primes, there may not exist a <math>\pi</math>-Hall subgroup.
* [[Hall subgroups exist in finite solvable]]: If, however, the finite group is solvable, then it has <math>\pi</math>-Hall subgroups for all prime sets <math>\pi</math>.
* [[Hall subgroups exist in finite solvable group]]: If, however, the finite group is solvable, then it has <math>\pi</math>-Hall subgroups for all prime sets <math>\pi</math>.
* [[Hall's theorem on solvability]]: This states that a finite group is solvable if and only if it has <math>\pi</math>-Hall subgroups for every prime set <math>\pi</math>.
* [[Hall's theorem]]: This states that a finite group is solvable if and only if it has <math>\pi</math>-Hall subgroups for every prime set <math>\pi</math>.
 
===Analogues in other algebraic structures===
 
* [[Sylow subloops exist for Sylow primes in finite Moufang loop]]
* [[2-Sylow subloops exist in finite Moufang loop]]
* [[3-Sylow subloops exist in finite Moufang loop]]
* [[Hall subloops exist in finite solvable Moufang loop]]


==Facts used==
==Facts used==


# [[uses::Lucas's theorem]]
# [[uses::Lucas' theorem]] (more specifically, [[uses::Lucas' theorem prime power case]])
# [[uses::Fundamental theorem of group actions]]: There is a bijection between the coset space of the stabilizer of an element and the orbit of that element. In particular, the size of the orbit equals the index of the stabilizer.
# [[uses::Fundamental theorem of group actions]]: There is a bijection between the coset space of the stabilizer of an element and the orbit of that element. In particular, the size of the orbit equals the index of the stabilizer.
# [[uses::Lagrange's theorem]]
# [[uses::Lagrange's theorem]]
Line 36: Line 45:


==Proof==
==Proof==
{{tabular proof format}}


===Proof by action on subsets===
===Proof by action on subsets===
Line 54: Line 65:
| 3 || <math>G</math> acts on <math>W</math> by left multiplication. || || || First, note that a group acts on the set of ''all'' its subsets by left multiplication. Further, since the left multiplication maps are bijective, they preserve the sizes of subsets. In particular, any subset of size <math>p^r</math> gets mapped to a subset of size <math>p^r</math>. Thus, we can restrict the action to the set <math>W</math> of subsets of size <math>p^r</math>.
| 3 || <math>G</math> acts on <math>W</math> by left multiplication. || || || First, note that a group acts on the set of ''all'' its subsets by left multiplication. Further, since the left multiplication maps are bijective, they preserve the sizes of subsets. In particular, any subset of size <math>p^r</math> gets mapped to a subset of size <math>p^r</math>. Thus, we can restrict the action to the set <math>W</math> of subsets of size <math>p^r</math>.
|-
|-
| 4 || The action of <math>G</math> on <math>W</math> has at least one orbit, say <math>\mathcal{O}</math>, whose size is relatively prime to <math>p</math> || || Step (2) || The size of <math>W</math> equals the sum of sizes of the orbits under the <math>G</math>-action. Since the total is relatively prime to <math>p</math>, at least one of the numbers has to be relatively prime to <math>p</math>.
| 4 || The action of <math>G</math> on <math>W</math> has at least one orbit, say <math>\mathcal{O}</math>, whose size is relatively prime to <math>p</math>. || || Step (2) || The size of <math>W</math> equals the sum of sizes of the orbits under the <math>G</math>-action. Since the total is relatively prime to <math>p</math>, at least one of the numbers has to be relatively prime to <math>p</math>.
|-
|-
| 5 || Let <math>S</math> be a member of such an orbit <math>\mathcal{O}</math> and <math>H</math> be the stabilizer of <math>S</math> in <math>G</math>.  || || ||
| 5 || Let <math>S</math> be a member of such an orbit <math>\mathcal{O}</math> and <math>H</math> be the stabilizer of <math>S</math> in <math>G</math>.  || || ||
|-
|-
| 6 || The index of <math>H</math> in <math>G</math> equals the size of <math>\mathcal{O}</math> || Fact (2) || Steps (4), (5)|| Follows directly from fact (2).
| 6 || The index of <math>H</math> in <math>G</math> equals the size of <math>\mathcal{O}</math>. || Fact (2) || Steps (4), (5)|| Follows directly from fact (2).
|-
|-
| 7 || The index of <math>H</math> in <math>G</math> is relatively prime to <math>p</math>. || || Steps (4), (6) || By step (4), the size of <math>\mathcal{O}</math> is relatively prime to <math>p</math>. By step (6), this equals the index of <math>H</math>. Thus, the index of <math>H</math> in <math>G</math> is relatively prime to <math>p</math>.  
| 7 || The index of <math>H</math> in <math>G</math> is relatively prime to <math>p</math>. || || Steps (4), (6) || By step (4), the size of <math>\mathcal{O}</math> is relatively prime to <math>p</math>. By step (6), this equals the index of <math>H</math>. Thus, the index of <math>H</math> in <math>G</math> is relatively prime to <math>p</math>.  

Latest revision as of 13:56, 1 June 2020

Statement

Let G be a finite group and p be a prime number. Then, there exists a p-Sylow subgroup P of G: a subgroup whose order is a power of p and whose index is relatively prime to p.

Note that when p does not divide the order of G, the p-Sylow subgroup is trivial, so the statement gives interesting information only when p divides the order of G.

This statement is often viewed as a part of a more general statement called Sylow's theorem.

Related facts

Other parts of Sylow's theorem

Stronger forms of existence

Analogues for Hall subgroups

The analogous statement does not hold for Hall subgroups. A Hall subgroup is a subgroup whose order and index are relatively prime. A π-Hall subgroup is a Hall subgroup such that the set of primes dividing its order is contained in π, and the set of primes dividing its index is disjoint from π.

Analogues in other algebraic structures

Facts used

  1. Lucas' theorem (more specifically, Lucas' theorem prime power case)
  2. Fundamental theorem of group actions: There is a bijection between the coset space of the stabilizer of an element and the orbit of that element. In particular, the size of the orbit equals the index of the stabilizer.
  3. Lagrange's theorem
  4. Class equation of a group
  5. Cauchy's theorem for abelian groups
  6. Central implies normal: Any subgroup inside the center is normal.

Proof

This proof uses a tabular format for presentation. Provide feedback on tabular proof formats in a survey (opens in new window/tab) | Learn more about tabular proof formats|View all pages on facts with proofs in tabular format

Proof by action on subsets

Given: A finite group G of order n=prm where p is prime, r is a nonnegative integer, and p does not divide m.

To prove: G has a subgroup of order pr.

Proof: Here are some observations regarding this action:

Step no. Construction/assertion Facts used Previous steps used Explanation
1 Let W be the set of all subsets of G of size pr.
2 The size of W is relatively prime to p Fact (1) The size of W is the binomial coefficient (npr), and an appeal to Lucas's theorem (fact (1)) reveals that its value is relatively prime to p.
3 G acts on W by left multiplication. First, note that a group acts on the set of all its subsets by left multiplication. Further, since the left multiplication maps are bijective, they preserve the sizes of subsets. In particular, any subset of size pr gets mapped to a subset of size pr. Thus, we can restrict the action to the set W of subsets of size pr.
4 The action of G on W has at least one orbit, say O, whose size is relatively prime to p. Step (2) The size of W equals the sum of sizes of the orbits under the G-action. Since the total is relatively prime to p, at least one of the numbers has to be relatively prime to p.
5 Let S be a member of such an orbit O and H be the stabilizer of S in G.
6 The index of H in G equals the size of O. Fact (2) Steps (4), (5) Follows directly from fact (2).
7 The index of H in G is relatively prime to p. Steps (4), (6) By step (4), the size of O is relatively prime to p. By step (6), this equals the index of H. Thus, the index of H in G is relatively prime to p.
8 The index of H in G divides m. Fact (3) Step (6) By fact (3) (Lagrange's theorem), the index of H in G divides the order of G, which is prm. By step (6), the index of H in G is relatively prime to p. Hence, it must divide m.
9 The index of H in G is at least m. Steps (1), (4), (5) The union of gS,gG, is the whole group G. Since each gS has size pr, there are at least n/pr=m translates of S in G. Thus, O has size at least m.
10 The index of H in G is exactly m, so H is a p-Sylow subgroup of G. Steps (8), (9) The index of H in G divides m and is at least m. The only way both of these could be true is if it equals m.

Interestingly, the only nontrivial result we use here (Lucas' theorem) can itself be proved using group theory by doing the above proof in reverse taking a cyclic group (although a purely algebraic proof also exists). ,

Proof by conjugation action

Given: A finite group G of order n=prm, where p is prime, r is a nonnegative integer, and p does not divide m.

To prove: G has a subgroup of order pr.

Proof: We prove the claim by induction on the order of G. Specifically, we assume that the result is true for all groups of order smaller than the order of G.

For the case r=0, the proof is direct since the trivial group is a subgroup of order pr. Thus, we assume r>0. In particular, p divides the order of G.

Consider the class equation of G (fact (4)):

|G|=|Z(G)|+i=1r|G:CG(gi)|

where c1,c2,,cr are the conjugacy classes of non-central elements and gi is an element of ci for each i.

We consider two cases:

Case that p divides the order of Z(G) :

Step no. Construction/assertion Facts used Previous steps used Explanation
1 There exists a normal subgroup of order p in G Facts (5), (6) Since Z(G) is Abelian, fact (5) yields that it has a subgroup H of order p. Since H is in the center, H is normal in G (by fact (6)). Thus, H is a normal subgroup of G of order p.
2 G/H has a p-Sylow subgroup, in particular, a subgroup Q of order pr1 Step (1) Since H has order p, G/H has order prm/p=pr1m. This is strictly smaller than the order of G, so induction applies and we get a p-Sylow subgroup, whose order is pr1.
3 Let α:GG/H be the quotient map. Then α1(Q) is a p-Sylow subgroup of G Steps (1), (2) Indeed, the order of α1(Q) is the product of the order of H and the order of Q, which is therefore ppr1=pr.

Case that p does not divide the order of Z(G)

Step no. Construction/assertion Facts used Previous steps used Explanation
1 There exists i such that p does not divide the index k of CG(gi) in G Since p divides the order of G, p cannot divide the index of every CG(gi), otherwise the class equation would yield that p divides the order of Z(G).
2 CG(gi) is a proper subgroup of G whose order is a multiple of pr, so pr is the largest power of p dividing its order. Fact (3) Step (1) Since gi is non-central, CG(gi) is proper in G. Further, since |G:CG(gi)|=k is relatively prime to p, Lagrange's theorem (fact (3)) yields that the order of CG(gi) is prm/k, which is a multiple of pr.
3 CG(gi) contains a subgroup of order pr Step (2) This follows by the induction hypothesis.
4 G contains a subgroup of order pr, and hence a p-Sylow subgroup. Step (3) A subgroup of order pr in CG(gi) is also a subgroup of order pr in G.