Element structure of special linear group:SL(2,7): Difference between revisions
(Created page with "{{group-specific information| group = special linear group:SL(2,7)| information type = element structure| connective = of}} This article gives detailed information about the ele...") |
|||
| (8 intermediate revisions by the same user not shown) | |||
| Line 8: | Line 8: | ||
See also [[element structure of special linear group of degree two]]. | See also [[element structure of special linear group of degree two]]. | ||
==Conjugacy class structure== | |||
Compare with [[element structure of special linear group of degree two over a finite field#Conjugacy class structure]]. | |||
In the table below, we consider the group as <math>SL(2,q), q = 7</math>. The information is stated for generic odd <math>q</math> and then computed numerically for <math>q = 7</math>. | |||
{| class="sortable" border="1" | {| class="sortable" border="1" | ||
! Nature of conjugacy class !! | ! Nature of conjugacy class !! Eigenvalue pairs of all conjugacy classes !! Characteristic polynomials of all conjugacy classes !! Minimal polynomials of all conjugacy classes !! Size of conjugacy class (generic odd <math>q</math>) !! Size of conjugacy class (<math>q = 7</math>) !! Number of such conjugacy classes (generic odd <math>q</math>) !! Number of such conjugacy classes (<math>q = 7</math>) !! Total number of elements (generic odd <math>q</math>) !! Total number of elements (<math>q = 7</math>) !! Representative matrices (one per conjugacy class) | ||
|- | |- | ||
| | | Scalar || <math>\{ 1, 1 \}</math> or <math>\{ -1,-1\}</math> || <math>x^2 - 2x + 1</math> or <math>x^2 + 2x + 1</math> || <math>x - 1</math> or <math>x + 1</math> || 1 || 1 || 2 || 2 || 2 || 2 || <math>\begin{pmatrix} 1 & 0 \\ 0 & 1 \\\end{pmatrix}</math> and <math>\begin{pmatrix} -1 & 0 \\ 0 & -1\\\end{pmatrix}</math> | ||
|- | |- | ||
| | | Not diagonal, Jordan block of size two || <math>\{ 1, 1 \}</math> or <math>\{ -1,-1\}</math> || <math>x^2 - 2x + 1</math> or <math>x^2 + 2x + 1</math> || <math>x^2 - 2x + 1</math> or <math>x^2 + 2x + 1</math> || <math>(q^2 - 1)/2</math> || 24 || 4 || 4 || <math>2(q^2 - 1)</math> || 96 || <toggledisplay><math>\begin{pmatrix} 1 & 1 \\ 0 & 1 \\\end{pmatrix}</math>, <math>\begin{pmatrix} 1 & -1 \\ 0 & 1 \\\end{pmatrix}</math>, <math>\begin{pmatrix} -1 & 1 \\ 0 & -1 \\\end{pmatrix}</math>, <math>\begin{pmatrix} -1 & -1 \\ 0 & -1 \\\end{pmatrix}</math></toggledisplay> | ||
|- | |- | ||
| Diagonalizable over <math>\mathbb{F}_q</math> | | Diagonalizable over <math>\mathbb{F}_{q^2}</math>, i.e., [[field:F49]], not over <math>\mathbb{F}_q</math>, i.e., [[field:F7]]. Must necessarily have no repeated eigenvalues. || For <math>q = 7</math>: <math>\{ \sqrt{-1}, -\sqrt{-1} \}</math>, <math>\{ 2 + \sqrt{3}, 2 - \sqrt{3} \}</math>, <math>\{ -2 + \sqrt{3}, -2 - \sqrt{3} \}</math> || For <math>q = 7</math>: <math>x^2 + 1</math>, <math>x^2 - 4x + 1</math>, <math>x^2 - 3x + 1</math> || For <math>q = 7</math>: <math>x^2 + 1</math>, <math>x^2 - 4x + 1</math>, <math>x^2 - 3x + 1</math> || <math>q(q - 1)</math> || 42 || <math>(q - 1)/2</math> || 3 || <math>q(q - 1)^2/2</math> || 126 || {{fillin}} | ||
|- | |- | ||
| | | Diagonalizable over <math>\mathbb{F}_q</math>, i.e., [[field:F7]] with ''distinct'' diagonal entries || For <math>q = 7</math>: <math>\{ 2,4 \}</math>, <math>\{ 3,5 \}</math> || For <math>q = 7</math>: <math>x^2 - x + 1</math>, <math>x^2 + x + 1</math> || For <math>q = 7</math>: <math>x^2 - x + 1</math>, <math>x^2 + x + 1</math> || <math>q(q+1)</math> || 56 || <math>(q - 3)/2</math> || 2 || <math>q(q+1)(q-3)/2</math> || 112 || <toggledisplay><math>\begin{pmatrix} 2 & 0 \\ 0 & 4 \\\end{pmatrix}</math>, <math>\begin{pmatrix} 3 & 0 \\ 0 & 5 \\\end{pmatrix}</math></toggledisplay> | ||
|- | |- | ||
| | ! Total || NA || NA || NA || NA || NA || <math>q + 4</math> || 11 || <math>q^3 - q</math> || 336 || NA | ||
|} | |} | ||
Latest revision as of 20:45, 31 May 2012
This article gives specific information, namely, element structure, about a particular group, namely: special linear group:SL(2,7).
View element structure of particular groups | View other specific information about special linear group:SL(2,7)
This article gives detailed information about the element structure of special linear group:SL(2,7), which is a group of order 336.
See also element structure of special linear group of degree two.
Conjugacy class structure
Compare with element structure of special linear group of degree two over a finite field#Conjugacy class structure.
In the table below, we consider the group as . The information is stated for generic odd and then computed numerically for .
| Nature of conjugacy class | Eigenvalue pairs of all conjugacy classes | Characteristic polynomials of all conjugacy classes | Minimal polynomials of all conjugacy classes | Size of conjugacy class (generic odd ) | Size of conjugacy class () | Number of such conjugacy classes (generic odd ) | Number of such conjugacy classes () | Total number of elements (generic odd ) | Total number of elements () | Representative matrices (one per conjugacy class) |
|---|---|---|---|---|---|---|---|---|---|---|
| Scalar | or | or | or | 1 | 1 | 2 | 2 | 2 | 2 | and |
| Not diagonal, Jordan block of size two | or | or | or | 24 | 4 | 4 | 96 | [SHOW MORE] | ||
| Diagonalizable over , i.e., field:F49, not over , i.e., field:F7. Must necessarily have no repeated eigenvalues. | For : , , | For : , , | For : , , | 42 | 3 | 126 | PLACEHOLDER FOR INFORMATION TO BE FILLED IN: [SHOW MORE] | |||
| Diagonalizable over , i.e., field:F7 with distinct diagonal entries | For : , | For : , | For : , | 56 | 2 | 112 | [SHOW MORE] | |||
| Total | NA | NA | NA | NA | NA | 11 | 336 | NA |