Element structure of quaternion group: Difference between revisions

From Groupprops
No edit summary
No edit summary
 
(2 intermediate revisions by the same user not shown)
Line 6: Line 6:
This page discusses the element structure of the [[quaternion group]]. Notation for the quaternion group differs somewhat from notation for most groups. The multiplication table that we use throughout to identify elements is given below.
This page discusses the element structure of the [[quaternion group]]. Notation for the quaternion group differs somewhat from notation for most groups. The multiplication table that we use throughout to identify elements is given below.


{{#lst:quaternion group|multiplication table}}
<section begin="multiplication table"/>


In the table below, the row element is multiplied on the left and the column element on the right.
{| class="sortable" border="1"
!Element !! <math>\! 1</math> !! <math>\! -1</math> !! <math>\! i</math> !! <math>\! -i</math> !! <math>\! j</math> !! <math>\! -j</math> !! <math>\! k</math> !! <math>\! -k</math>
|-
| <math>\! 1</math> || <math>\! 1</math> || <math>\! -1</math> || <math>\! i</math> || <math>\! -i</math> || <math>\! j</math> || <math>\! -j</math> || <math>\! k</math> || <math>\! -k</math>
|-
| <math>\! -1</math> || <math>\! -1</math> || <math>\! 1</math> || <math>\! -i</math> || <math>\! i</math> || <math>\! -j</math> || <math>\! j</math> || <math>\! -k</math> || <math>\! k</math>
|-
| <math>\! i</math> || <math>\! i</math> || <math>\! -i</math> || <math>\! -1</math> || <math>\! 1</math> || <math>\! k</math> || <math>\! -k</math> || <math>\! -j</math> || <math>\! j</math>
|-
| <math>\! -i</math> || <math>\! -i</math> || <math>\! i</math> || <math>\! 1</math> || <math>\! -1</math> || <math>\! -k</math> || <math>\! k</math> || <math>\! j</math> || <math>\! -j</math>
|-
| <math>\! j</math> || <math>\! j</math> || <math>\! -j</math> || <math>\! -k</math> || <math>\! k</math> || <math>\! -1</math> || <math>\! 1</math> || <math>\! i</math> || <math>\! -i</math>
|-
| <math>\! -j</math> || <math>\! -j</math> || <math>\! j</math> || <math>\! k</math> || <math>\! -k</math> || <math>\! 1</math> || <math>\! -1</math> || <math>\! -i</math> || <math>\! i</math>
|-
| <math>\! k</math> || <math>\! k</math> || <math>\! -k</math> || <math>\! j</math> || <math>\! -j</math> || <math>\! -i</math> || <math>\! i</math> || <math>\! -1</math> || <math>\! 1</math>
|-
| <math>\! -k</math> || <math>\! -k</math> || <math>\! k</math> || <math>\! -j</math> || <math>\! j</math> || <math>\! i</math> || <math>\! -i</math> || <math>\! 1</math> || <math>\! -1</math>
|}
<section end="multiplication table"/>
==Summary==
==Summary==


Line 20: Line 42:
|}
|}


==Conjugacy class structure==
==Conjugacy and automorphism class structure==
 
===Conjugacy class structure===


{{conjugacy class structure facts to check against}}
{{conjugacy class structure facts to check against}}
<section begin="conjugacy and automorphism class structure"/>


{| class="sortable" border="1"
{| class="sortable" border="1"
! Conjugacy class !! Size of conjugacy class !! Order of elements in conjugacy class !! Centralizer of first element of class
! [[Conjugacy class]] !! [[Conjugacy class size statistics of a finite group|Size of conjugacy class]] !! [[Order of an element|Order of elements]] in conjugacy class !! Centralizer of first element of class
|-
|-
| <math>\! \{ 1 \}</math> || 1 || 1 || whole group
| <math>\! \{ 1 \}</math> || 1 || 1 || whole group
Line 38: Line 64:
|}
|}


The equivalence classes up to automorphisms are:
===Automorphism class structure===


{| class="sortable" border="1"
{| class="sortable" border="1"
! Equivalence class under automorphisms !! Size of equivalence class !! Number of conjugacy classes in it !! Size of each conjugacy class
! Equivalence class (orbit) under action of automorphisms !! Size of equivalence class (orbit) !! Number of conjugacy classes in it !! Size of each conjugacy class !! Order of elements
|-
|-
| <math>\! \{ 1 \}</math> || 1 || 1 || 1
| <math>\! \{ 1 \}</math> || 1 || 1 || 1 || 1
|-
|-
| <math>\! \{ -1 \}</math> || 1 || 1 || 1
| <math>\! \{ -1 \}</math> || 1 || 1 || 1 || 2
|-
|-
| <math>\! \{ i,-i,j,-j,k,-k \}</math> || 6 || 3 || 2
| <math>\! \{ i,-i,j,-j,k,-k \}</math> || 6 || 3 || 2 || 4
|}
|}
<section end="conjugacy and automorphism class structure"/>


==Order and power information==
==Order and power information==

Latest revision as of 23:29, 4 July 2011

This article gives specific information, namely, element structure, about a particular group, namely: quaternion group.
View element structure of particular groups | View other specific information about quaternion group

This page discusses the element structure of the quaternion group. Notation for the quaternion group differs somewhat from notation for most groups. The multiplication table that we use throughout to identify elements is given below.

In the table below, the row element is multiplied on the left and the column element on the right.

Element 1 1 i i j j k k
1 1 1 i i j j k k
1 1 1 i i j j k k
i i i 1 1 k k j j
i i i 1 1 k k j j
j j j k k 1 1 i i
j j j k k 1 1 i i
k k k j j i i 1 1
k k k j j i i 1 1

Summary

Item Value
order of the whole group (total number of elements) 8
conjugacy class sizes 1,1,2,2,2
maximum: 2, number of conjugacy classes: 5, lcm: 2
order statistics 1 of order 1, 1 of order 2, 6 of order 4
maximum: 4, lcm (exponent of the whole group): 4

Conjugacy and automorphism class structure

Conjugacy class structure

FACTS TO CHECK AGAINST FOR CONJUGACY CLASS SIZES AND STRUCTURE:
Divisibility facts: size of conjugacy class divides order of group | size of conjugacy class divides index of center | size of conjugacy class equals index of centralizer
Bounding facts: size of conjugacy class is bounded by order of derived subgroup
Counting facts: number of conjugacy classes equals number of irreducible representations | class equation of a group

Conjugacy class Size of conjugacy class Order of elements in conjugacy class Centralizer of first element of class
{1} 1 1 whole group
{1} 1 2 whole group
{i,i} 2 4 {1,1,i,i}, same as i
{j,j} 2 4 {1,1,j,j} -- same as j
{k,k} 2 4 {1,1,k,k} -- same as k

Automorphism class structure

Equivalence class (orbit) under action of automorphisms Size of equivalence class (orbit) Number of conjugacy classes in it Size of each conjugacy class Order of elements
{1} 1 1 1 1
{1} 1 1 1 2
{i,i,j,j,k,k} 6 3 2 4

Order and power information

Directed power graph

Below is a trimmed version of the directed power graph of the group. There is an arrow from one vertex to another if the latter is the square of the former. We do not draw a loop at the identity element.

Order statistics

Number Elements of order exactly that number Number of such elements Number of conjugacy classes of such elements Number of elements whose order divides that number Number of conjugacy classes whose element order divides that number
1 {1} 1 1 1 1
2 {1} 1 1 2 2
4 |{i,i,j,j,k,k} 6 3 8 5

Power statistics

Number d dth powers that are not kth powers for any larger divisor k of the group order Number of such elements Number of conjugacy classes of such elements Number of dth powers Number of conjugacy classes of dth powers
1 {i,i,j,j,k,k} 6 3 8 5
2 {1} 1 1 2 2
4 -- 0 0 1 1
8 {1} 1 1 1 1