Left transiter-preserved subgroup metaproperty: Difference between revisions

From Groupprops
No edit summary
 
(One intermediate revision by the same user not shown)
Line 3: Line 3:
==Definition==
==Definition==


A [[subgroup metaproperty]] <math>\alpha</math> is termed '''left transiter-closed''' if whenever a [[subgroup property]] <math>p</math> satisfies <math>\alpha</math>, then the [[left transiter]] of <math>p</math> also satisfies <math>\alpha</math>.
A [[subgroup metaproperty]] <math>\alpha</math> is termed '''left transiter-preserved''' or '''left transiter-closed''' if whenever a [[subgroup property]] <math>p</math> satisfies <math>\alpha</math>, then the [[left transiter]] of <math>p</math> also satisfies <math>\alpha</math>.
 
==Relation with other metaproperties==
 
===Stronger metaproperties===
 
* [[Weaker than::Left residual-preserved subgroup metaproperty]]

Latest revision as of 19:18, 17 September 2008

This article defines a subgroup metametaproperty
View a complete list of subgroup metametaproperties

Definition

A subgroup metaproperty is termed left transiter-preserved or left transiter-closed if whenever a subgroup property satisfies , then the left transiter of also satisfies .

Relation with other metaproperties

Stronger metaproperties