Left transiter-preserved subgroup metaproperty: Difference between revisions
No edit summary |
|||
| Line 3: | Line 3: | ||
==Definition== | ==Definition== | ||
A [[subgroup metaproperty]] <math>\alpha</math> is termed '''left transiter-closed''' if whenever a [[subgroup property]] <math>p</math> satisfies <math>\alpha</math>, then the [[left transiter]] of <math>p</math> also satisfies <math>\alpha</math>. | A [[subgroup metaproperty]] <math>\alpha</math> is termed '''left transiter-preserved''' or '''left transiter-closed''' if whenever a [[subgroup property]] <math>p</math> satisfies <math>\alpha</math>, then the [[left transiter]] of <math>p</math> also satisfies <math>\alpha</math>. | ||
Revision as of 17:47, 17 September 2008
This article defines a subgroup metametaproperty
View a complete list of subgroup metametaproperties
Definition
A subgroup metaproperty is termed left transiter-preserved or left transiter-closed if whenever a subgroup property satisfies , then the left transiter of also satisfies .