Linear representation theory of symmetric group:S7

From Groupprops
Jump to: navigation, search
This article gives specific information, namely, linear representation theory, about a particular group, namely: symmetric group:S7.
View linear representation theory of particular groups | View other specific information about symmetric group:S7

Summary

Item Value
degrees of irreducible representations over a splitting field 1,1,6,6,14,14,14,14,15,15,20,21,21,35,35
maximum: 35, lcm: 420, number: 15, sum of squares: 5040
Schur index values of irreducible representations over a splitting field 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 (all 1s)
smallest ring of realization (characteristic zero) -- ring of integers
smallest field of realization (characteristic zero) -- field of rational numbers
condition for a field to be a splitting field Any field of characteristic not 2, 3, 5, or 7.
smallest size splitting field field:F11, i.e., the field with 11 elements


Family contexts

Family name Parameter values General discussion of linear representation theory of family
symmetric group 7 linear representation theory of symmetric groups

GAP implementation

The degrees of irreducible representations can be computed using GAP's CharacterDegrees and SymmetricGroup functions:

gap> CharacterDegrees(SymmetricGroup(7));
[ [ 1, 2 ], [ 6, 2 ], [ 14, 4 ], [ 15, 2 ], [ 20, 1 ], [ 21, 2 ], [ 35, 2 ] ]

The charaters of irreducible representations can be computed using GAP's CharacterTable function:

gap> Irr(CharacterTable(SymmetricGroup(7)));
[ Character( CharacterTable( Sym( [ 1 .. 7 ] ) ), [ 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1 ] ), Character( CharacterTable( Sym(
    [ 1 .. 7 ] ) ), [ 6, -4, 2, 0, 3, -1, -1, 0, -2, 0, 1, 1, 1, 0, -1 ] ), Character( CharacterTable( Sym( [ 1 .. 7 ] ) ),
    [ 14, -6, 2, -2, 2, 0, 2, -1, 0, 0, 0, -1, -1, 1, 0 ] ), Character( CharacterTable( Sym( [ 1 .. 7 ] ) ), [ 14, -4, 2, 0, -1, -1, -1, 2, 2, 0, -1, -1,
      1, 0, 0 ] ), Character( CharacterTable( Sym( [ 1 .. 7 ] ) ), [ 15, -5, -1, 3, 3, 1, -1, 0, -1, -1, -1, 0, 0, 0, 1 ] ),
  Character( CharacterTable( Sym( [ 1 .. 7 ] ) ), [ 35, -5, -1, -1, -1, 1, -1, -1, 1, 1, 1, 0, 0, -1, 0 ] ), Character( CharacterTable( Sym(
    [ 1 .. 7 ] ) ), [ 21, -1, 1, 3, -3, -1, 1, 0, 1, -1, 1, 1, -1, 0, 0 ] ), Character( CharacterTable( Sym( [ 1 .. 7 ] ) ),
    [ 21, 1, 1, -3, -3, 1, 1, 0, -1, -1, -1, 1, 1, 0, 0 ] ), Character( CharacterTable( Sym( [ 1 .. 7 ] ) ), [ 20, 0, -4, 0, 2, 0, 2, 2, 0, 0, 0, 0, 0, 0,
      -1 ] ), Character( CharacterTable( Sym( [ 1 .. 7 ] ) ), [ 35, 5, -1, 1, -1, -1, -1, -1, -1, 1, -1, 0, 0, 1, 0 ] ), Character( CharacterTable( Sym(
    [ 1 .. 7 ] ) ), [ 14, 4, 2, 0, -1, 1, -1, 2, -2, 0, 1, -1, -1, 0, 0 ] ), Character( CharacterTable( Sym( [ 1 .. 7 ] ) ),
    [ 15, 5, -1, -3, 3, -1, -1, 0, 1, -1, 1, 0, 0, 0, 1 ] ), Character( CharacterTable( Sym( [ 1 .. 7 ] ) ), [ 14, 6, 2, 2, 2, 0, 2, -1, 0, 0, 0, -1, 1,
      -1, 0 ] ), Character( CharacterTable( Sym( [ 1 .. 7 ] ) ), [ 6, 4, 2, 0, 3, 1, -1, 0, 2, 0, -1, 1, -1, 0, -1 ] ), Character( CharacterTable( Sym(
    [ 1 .. 7 ] ) ), [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ) ]